Optics and Precision Engineering, Volume. 32, Issue 12, 1929(2024)

Few-shot warhead fragment group object detection based on feature reassembly and attention

Meng HE... Jiangpeng WU*, Chao LIANG, Pengyu HU, Yuan REN, Xuan HE and Qianghui LIU |Show fewer author(s)
Author Affiliations
  • Xi’an Modern Control Technology Research Institute, Xi’an710065, China
  • show less
    Figures & Tables(14)
    Network structure of YOLOv5s-FD model
    CARAFE module structure
    CA module structure
    Framework for training object detection model using MAML method
    Backbone network freeze layer
    Self-made fragment dataset presentation
    Comparison of precision and recall metrics for different models
    Comparison of average precision metrics for different models
    Comparison of YOLOv5s and this paper model detection effect scene 1
    Comparison of YOLOv5s and this paper model detection effect scene 2
    • Table 1. Experimental environment

      View table
      View in Article

      Table 1. Experimental environment

      ProjectEnvironment
      CPUIntel(R) Xeon(R) Silver 4215R CPU @ 3.20 GHz 3.19 GHz
      Memory128 GB
      Operating SystemUbuntu 20.04
      GPU4 NVIDIA RTX3090
      Python versionPython3.9
      Pytorch versionPyTorch1.10
      Object Detection FrameworkYOLOv5s-FD
      GPU Acceleration LibraryCUDA cuDNN
    • Table 2. Comparative experiment on the effectiveness of MAML meta learning training methods

      View table
      View in Article

      Table 2. Comparative experiment on the effectiveness of MAML meta learning training methods

      Training MethodPRmAP_0.5mAP_0.5∶0.95
      Traditional0.8620.7930.8450.546
      MAML0.9050.8540.8820.611
    • Table 3. Ablation experimental results

      View table
      View in Article

      Table 3. Ablation experimental results

      YOLOv5sSODLCARAFECAPRmAP_0.5mAP_0.5∶0.95

      Size

      /MB

      Params

      /M

      GFLOPs

      /G

      FPS(frames/s)
      10.8340.7750.8070.54214.47.0215.9127
      20.8690.8130.8370.57614.87.1718.3114
      30.8780.8260.8510.58815.17.3219.4104
      40.9050.8540.8820.61115.67.9420.195
    • Table 4. Performance comparison of different algorithm models on Fragment data set

      View table
      View in Article

      Table 4. Performance comparison of different algorithm models on Fragment data set

      ModelPRmAP_0.5mAP_0.5:0.95

      Size

      /MB

      Params

      /M

      GFLOPs

      /G

      FPS(frames/s)
      Faster R-CNN0.6990.5680.598-108.9136.60402.329
      SSD0.6300.4950.518-100.324.40274.181
      YOLOv5s0.8340.7750.8070.54214.47.0215.9127
      YOLOv8s0.8260.7890.8170.58122.511.1328.6112
      YOLOv5s-FD(ours)0.9050.8540.8820.61115.67.9420.195
    Tools

    Get Citation

    Copy Citation Text

    Meng HE, Jiangpeng WU, Chao LIANG, Pengyu HU, Yuan REN, Xuan HE, Qianghui LIU. Few-shot warhead fragment group object detection based on feature reassembly and attention[J]. Optics and Precision Engineering, 2024, 32(12): 1929

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 9, 2024

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: WU Jiangpeng (wjp62795@126.com)

    DOI:10.37188/OPE.20243212.1929

    Topics