Spectroscopy and Spectral Analysis, Volume. 42, Issue 7, 1999(2022)

Application Progress of Spectral Detection Technology of Melamine in Food

Ru-lin LÜ1,*... Hong-yuan HE1,1; *;, Zhen JIA1,1;, Shu-yue WANG1,1;, Neng-bin CAI2,2; and Xiao-bin WANG1,1; |Show fewer author(s)
Author Affiliations
  • 11. College of Investigation, People’s Public Security University of China, Beijing 100038, China
  • 22. Shanghai Key Laboratory of on Site Material Evidence, Shanghai Public Security Bureau Material Evidence Identification Center, Shanghai 200000, China
  • show less
    Figures & Tables(6)
    SEM images of biosensor before (a) and after (b) cross-linking reaction[29]
    Color-coded chemical image of sample mixture (6% concentration) generated by binary detection[32]
    Comparison of Raman spectra before and after airPLS[45]
    • Table 1. Main spectral pretreatment methods

      View table
      View in Article

      Table 1. Main spectral pretreatment methods

      预处理方法原理特点参考文献
      导数校正Xi*=Xi+j-Xig消除荧光背景干扰, 增强特征峰, 但会改变光谱峰形。[43]
      多元散射校正Xi*=X̅i-biki有效地消除不同散射能级引起的光谱差异, 增强光谱与数据的相关性。[47]
      标准正态
      变量变换
      Xi*=Xi-X̅k=1m(Xk-X̅)2(m-1)有效地消除散射和粒径干扰, 校正基线漂移和旋转变化, 常用于粉末或填充密实样品的反射光谱。[48]
      高斯平滑滤波G(xi*,yi*)=12πσ2e-xi2+yi22σ2适用于消除高斯噪声, 广泛应用于高光谱图像去噪。
      S-G平滑滤波Xi*=j=-rlXi+jWjj=-liWj消声效果随窗口大小而变化, 可应用于多种场合。[42]
      自适应迭代加权
      惩罚最小二乘法
      Wit=0xizit-1et(xi-zit-1)|dt|xi<zit-1从高维、 非零变量的复杂数据中滤除背景基线, 得到与分析对象相对应的纯光谱特征数据。[49]
      中心归一化Xi*=Xi-X̅σ对数据按比例进行缩放和变换, 使数据落入一个固定的区间内, 消除数据维数的影响。[29]
    • Table 2. Melamine quantification regression model

      View table
      View in Article

      Table 2. Melamine quantification regression model

      模型名称仪器线性范围、 定量限或检测限模型评价参考文献
      一元线性回归表面增强拉曼光谱LOQ=0.5 μg·mL-1R2=0.999 8[62]
      多元线性回归太赫兹光谱LOD=4.55%
      0.5%~19.99%
      R2=0.97
      RMSEP=1.38%
      [33]
      主成分分析回归近红外光谱0.1%~2%R2=0.923 7
      RMSEP=0.289%
      [22]
      偏最小二乘回归表面增强拉曼光谱LOD=0.016 5 mmol·L-1
      LOQ=0.055 mmol·L-1
      R2=0.97[63]
      卷积神经网络近红外光谱0%~10%RMSEP=0.064
      R2=0.995
      [58]
      支持向量机表面增强拉曼光谱LOQ=0.5 ppmRMSEP=1.963 6
      R2=0.973 6
      [57]
      直接硬建模回归表面增强拉曼光谱0.5~15 mg·kg-1R2=0.947
      RMSEP=0.893%
    • Table 3. Classification model for melamine detection

      View table
      View in Article

      Table 3. Classification model for melamine detection

      模型名称仪器测试结果参考文献
      一类偏最小二乘近红外光谱训练集准确率94%
      验证集准确率89%
      [23]
      分类和回归树傅里叶变换红外光谱训练集准确率95.5%[56]
      验证集准确率88.5%
      偏最小二乘判别训练集准确率95.85%
      验证集准确率93.87%
      K-最邻近模型训练集准确率95.21%
      验证集准确率91.37%
      软独立分类近红外光谱训练集准确率100%
      验证集准确率100%
      [59]
    Tools

    Get Citation

    Copy Citation Text

    Ru-lin LÜ, Hong-yuan HE, Zhen JIA, Shu-yue WANG, Neng-bin CAI, Xiao-bin WANG. Application Progress of Spectral Detection Technology of Melamine in Food[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 1999

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Orginal Article

    Received: Jun. 5, 2021

    Accepted: --

    Published Online: Nov. 16, 2022

    The Author Email: LÜ Ru-lin (woshiziya1997@163.com)

    DOI:10.3964/j.issn.1000-0593(2022)07-1999-08

    Topics