Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 8, 813(2024)

Research progress of ultrafast terahertz radiation in single-layer ferromagnets

HONG Huixiang1...2,3,4, ZHANG Huiping1,2,3,4,*, XU Yong5, WU Shaohui6, JIN Zuanming1,2,3,4, and PENG Yan1,2,34 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • show less
    References(61)

    [1] [1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007,1(2):97-105. doi:10.1038/nphoton.2007.3.

    [2] [2] LEITENSTORFER A, MOSKALENKO A S, KAMPFRATH T, et al. The 2023 terahertz science and technology roadmap[J].Journal of Physics D:Applied Physics, 2023,56(22):223001. doi:10.1088/1361-6463/acbe4c.

    [3] [3] DHILLON S S,VITIELLO M S,LINFIELD E H,et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D:Applied Physics, 2017,50(4):043001. doi:10.1088/1361-6463/50/4/043001.

    [4] [4] YANG Surui, CHENG Liang, QI Jingbo. Terahertz emission in quantum materials[J]. Ultrafast Science, 2023(3): 47. doi:10.34133/ultrafastscience.0047.

    [5] [5] CHEN Sichao, FENG Zheng, LI Jiang, et al. Ghost spintronic THz-emitter-array microscope[J]. Light-Science & Applications,2020(9):99. doi:10.1038/s41377-020-0338-4.

    [6] [6] YAMAGUCHI S, FUKUSHI Y, KUBOTA O, et al. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy[J].Scientific Reports, 2016(6):30124. doi:10.1038/srep30124.

    [7] [7] KUMAR A, GUPTA M, PITCHAPPA P, et al. Terahertz topological photonic integrated circuits for 6G and beyond: a perspective[J].Journal of Applied Physics, 2022,132(14):140901. doi:10.1063/5.0099423.

    [8] [8] WALOWSKI J,MüNZENBERG M. Perspective: ultrafast magnetism and THz spintronics[J]. Journal of Applied Physics, 2016,120(14):4958846. doi:10.1063/1.4958846.

    [9] [9] HWANG H Y,FLEISCHER S,BRANDT N C,et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses[J]. Journal of Modern Optics, 2015(62):1447-1479. doi:10.1080/09500340.2014.918200.

    [10] [10] KUMAR S,SINGH A,NIVEDAN A,et al. Sub-bandgap activated charges transfer in a graphene-MoS2-graphene heterostructure[J].Nano Select, 2021,2(10):2019-2028. doi:10.1002/nano.202000159.

    [11] [11] KUMAR S,SINGH A,KUMAR S,et al. Enhancement in optically induced ultrafast THz response of MoSe2MoS2 heterobilayer[J].Optics Express, 2021,29(3):4181-4190. doi:10.1364/OE.412548.

    [12] [12] TAKAZATO A, KAMAKURA M, MATSUI T. Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation[J]. Applied Physics Letters, 2007, 91(1): 011102. doi: 10.1063/1.2754370.

    [13] [13] SHEN Y C, UPADHYA P C, LINFIELD E H, et al. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters[J]. Applied Physics Letters, 2003,83(15):3117-3119. doi:10.1063/1.1619223.

    [14] [14] BURFORD N M,EL-SHENAWEE M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 2017,56(1):010901. doi:10.1117/1.OE.56.1.010901/.

    [15] [15] NAHATA A, WELING A S, HEINZ T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling[J]. Applied Physics Letters, 1996,69(16):2321-2323. doi:10.1063/1.117511.

    [16] [16] AOKI K, SAVOLAINEN J, HAVENITH M. Broadband terahertz pulse generation by optical rectification in GaP crystals[J].Applied Physics Letters, 2017,110(20):4983371. doi:10.1063/1.4983371.

    [17] [17] SHALABY M, HAURI C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J].Nature Communications, 2015(6):5976. doi:10.1038/ncomms6976.

    [18] [18] HIRORI H, DOI A, BLANCHARD F, et al. Single-cycle terahertz pulses with amplitudes exceeding 1 mV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 2011,98(9):3560062. doi:10.1063/1.3560062.

    [19] [19] VICARIO C,JAZBINSEK M,OVCHINNIKOV A V,et al. High efficiency THz generation in DSTMS,DAST and OH1 pumped by Cr:forsterite laser[J]. Optics Express, 2015,23(4):4573-4580. doi:10.1364/OE.23.004573.

    [20] [20] ROSKOS H G, THOMSON M D, KRE? M, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses:from fundamentals to applications[J]. Laser&Photonics Reviews, 2007,1(4):349-368. doi:10.1002/lpor.200710025.

    [21] [21] BARTEL T P, GAAL P, REIMANN K, et al. Generation of single-cycle THz transients with high electric-field amplitudes[J].Optics Letters, 2005,30(20):2805-2807. doi:10.1364/ol.30.002805.

    [22] [22] YU Zhiqiang,SUN Lu,ZHANG Nan,et al. Anti-correlated plasma and THz pulse generation during two-color laser filamentation in air[J]. Ultrafast Science, 2022,(6):9853053. doi:10.34133/2022/9853053.

    [23] [23] ZHANG Zhelin, ZHANG Jiayang, CHEN Yanping, et al. Bessel terahertz pulses from superluminal laser plasma filaments[J].Ultrafast Science, 2022(1):9870325. doi:10.34133/2022/9870325.

    [24] [24] KAMPFRATH T, BATTIATO M, MALDONADO P, et al. Terahertz spin current pulses controlled by magnetic heterostructures[J].Nature Nanotechnology, 2013,8(4):256-260. doi:10.1038/nnano.2013.43.

    [25] [25] SEIFERT T, JAISWAL S, MARTENS U, et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J].Nature Photonics, 2016,10(7):483-488. doi:10.1038/nphoton.2016.91.

    [26] [26] HUANG Lin,LEE S H,KIM S D,et al. Universal field-tunable terahertz emission by ultrafast photoinduced demagnetization in Fe,Ni,and Co ferromagnetic films[J]. Scientific Reports, 2020,10(1):15843. doi:10.1038/s41598-020-72855-1.

    [28] [28] SEIFERT T,JAISWAL S,SAJADI M,et al. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm?1 from a metallic spintronic emitter[J]. Applied Physics Letters, 2017,110(25):4986755. doi:10.1063/1.4986755.

    [29] [29] TOROSYAN G, KELLER S, SCHEUER L, et al. Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures[J]. Scientific Reports, 2018,8(1):1311. doi:10.1038/s41598-018-19432-9.

    [30] [30] WU Yang,ELYASI M,QIU Xuepeng,et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures[J].Advanced Materials, 2017,29(4):1603031. doi:10.1002/adma.201603031.

    [31] [31] YANG Dewang, LIANG Jianhui, ZHOU Chao, et al. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure[J]. Advanced Optical Materials, 2016,4(12):1944-1949. doi:10.1002/adom.201600270.

    [33] [33] BEAUREPAIRE E,MERLE J C,DAUNOIS A,et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Physical Review Letters,1996,76(22):4250-4253. doi:10.1103/PhysRevLett.76.4250.

    [34] [34] BEAUREPAIRE E, TURNER G M, HARREL S M, et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J]. Applied Physics Letters, 2004,84(18):3465-3467. doi:10.1063/1.1737467.

    [35] [35] ZHOU C,LIU Y P,WANG Z,et al. Broadband terahertz generation via the interface inverse Rashba-Edelstein effect[J]. Physical Review Letters, 2018,121(8):086801. doi:10.1103/PhysRevLett.121.086801.

    [36] [36] JUNGFLEISCH M B,ZHANG Qi,ZHANG Wei,et al. Control of terahertz emission by ultrafast spin-charge current conversion at Rashba interfaces[J]. Physical Review Letters, 2018,120(20):207207. doi:10.1103/PhysRevLett.120.207207.

    [37] [37] KHOLID F N, HAMARA D, HAMDAN A F B, et al. The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures[J]. Nature Communications, 2023,14(1):538. doi:10.1038/s41467-023-36166-z.

    [38] [38] CONG Kankan, VETTER E, YAN Liang, et al. Coherent control of asymmetric spintronic terahertz emission from twodimensional hybrid metal halides[J]. Nature Communications, 2021,12(1):5744. doi:10.1038/s41467-021-26011-6.

    [39] [39] WANG Yangkai,LI Weiwei,CHENG Hao,et al. Enhancement of spintronic terahertz emission enabled by increasing Hall angle and interfacial skew scattering[J]. Communications Physics, 2023,6(1):280. doi:10.1038/s42005-023-01402-x.

    [40] [40] XU Yong,ZHANG Fan,FERT A,et al. Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments[J].Nature Communications, 2024,15(1):2043. doi:10.1038/s41467-024-46405-6.

    [41] [41] KUMAR S, KUMAR S. Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures[J].Nature Communications, 2023,14(1):8185. doi:10.1038/s41467-023-43956-y.

    [42] [42] SEIFERT T S, GO D, HAYASHI H, et al. Publisher correction: time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten[J]. Nature Nanotechnology, 2023, 18(10): 1254. doi: 10.1038/s41565-023-01504-1.

    [43] [43] ZHANG Shunnong,JIN Zuanming,ZHU Zhendong,et al. Bursts of efficient terahertz radiation with saturation effect from metalbased ferromagnetic heterostructures[J]. Journal of Physics D: Applied Physics, 2018, 51(3): 034001. doi: 10.1088/1361-6463/aa9e43.

    [44] [44] JIN Zuanming,ZHANG Shunnong,ZHU Weihua,et al. Terahertz radiation modulated by confinement of picosecond current based on patterned ferromagnetic heterostructures[J]. Physica Status Solidi(RRL)―Rapid Research Letters, 2019,13(9):1900057. doi:10.1002/pssr.201900057.

    [45] [45] NI Yangyang,JIN Zuanming,SONG Bangju,et al. Temperature-dependent terahertz emission from Co/Mn2Au spintronic bilayers[J]. Physica Status Solidi(RRL)-Rapid Research Letters, 2021,15(10):2100290. doi:10.1002/pssr.202100290.

    [46] [46] JIN Zuanming, PENG Yan, NI Yangyang, et al. Cascaded amplification and manipulation of terahertz emission by flexible spintronic heterostructures[J]. Laser & Photonics Reviews, 2022,16(9):2100688. doi:10.1002/lpor.202100688.

    [47] [47] JIN Zuanming,GUO Yingyu,PENG Yan,et al. Terahertz spectral signatures of ultrafast spin transports in ferromagnetic Heusler alloy[J]. Advanced Physics Research, 2023,2(2):2200049. doi:10.1002/apxr.202200049.

    [48] [48] ZHANG Qi,LUO Ziyan,LI Hong,et al. Terahertz emission from Anomalous Hall Effect in a single-layer ferromagnet[J]. Physical Review Applied, 2019,12(5):054027. doi:10.1103/PhysRevApplied.12.054027.

    [49] [49] LIU Yongshan, CHENG Houyi, XU Yong, et al. Separation of emission mechanisms in spintronic terahertz emitters[J]. Physical Review B, 2021,104(6):064419. doi:10.1103/PhysRevB.104.064419.

    [50] [50] LAN Zhiqiang, LI Zhangshun, XU Haoran, et al. Unveiling of terahertz emission from ultrafast demagnetization and Anomalous Hall Effect in a single ferromagnetic film[J]. Chinese Physics Letters, 2024(41):044203. doi:10.1088/0256-307X/41/4/044203.

    [51] [51] FENG Zheng,TAN Wei,JIN Zuanming,et al. Anomalous Nernst Effect induced terahertz emission in a single ferromagnetic film[J].Nano Letters, 2023,23(17):8171-8179. doi:10.1021/acs.nanolett.3c02320.

    [52] [52] ZHANG Hui,FENG Zheng,LI Guansong,et al. Tuning terahertz emission generated by Anomalous Nernst Effect in ferromagnetic metal[J]. Applied Physics Reviews, 2023,10(2):021417. doi:10.1063/5.0139197.

    [53] [53] MOTTAMCHETTY V, RANI P, BRUCAS R, et al. Direct evidence of terahertz emission arising from Anomalous Hall Effect[J].Scientific Reports, 2023,13(1):5988. doi:10.1038/s41598-023-33143-w.

    [54] [54] CHARLOTTE B, SIMMONE M H, RUIDONG J, et al. Spintronic terahertz emitters: status and prospects from a materials perspective[J]. APL Materials, 2021,9(9):090701. doi:10.1063/5.0057511.

    [55] [55] LU Wentian,YUAN Zhe. Progress in ultrafast spintronics research[J]. SCIENTIA SINICA―Physica,Mechanica & Astronomica,2022,52(7):270007. doi:10.1360/SSPMA-2021-0350.

    [56] [56] PAPAIOANNOU T E,BEIGANG R. THz spintronic emitters: a review on achievements and future challenges[J]. Nanophotonics,2020(10):1243-1257. doi:10.1515/nanoph-2020-0563.

    [57] [57] ZHENG Feng, QIU Hongsong, WANG Dacheng, et al. Spintronic terahertz emitter[J]. Journal of Applied Physics, 2021, 129(1):010901. doi:10.1063/5.0037937.

    [58] [58] KUMAR S,KUMAR S. Ultrafast terahertz spin and orbital transport in magnetic/nonmagnetic multilayer heterostructures and a perspective[J]. Journal of Applied Physics, 2023,134(17):170901. doi:10.1063/5.0173977.

    [59] [59] FENG Zheng,WANG Dacheng,SUN Song,et al. Spintronic terahertz emitter:performance,manipulation,and applications[J]. Acta Physica Sinica, 2020,69(20):208705. doi:10.7498/aps.69.20200757.

    [60] [60] WANG Maorong, ZHANG Yifan, GUO Leilei, et al. Spintronics based terahertz sources[J]. Crystals, 2022, 12(11): 1661. doi:10.3390/cryst12111661.

    [61] [61] ROUZEGAR R, BRANDT L, NADVORNIK L, et al. Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization[J]. Physical Review B, 2022, 106(14): 144427. doi: 10.1103/PhysRevB.106.144427.

    [62] [62] ZHANG Shunnong, JIN Zuanming, LIU Xiumei, et al. Photoinduced terahertz radiation and negative conductivity dynamics in Heusler alloy Co2MnSn film[J]. Optics Letters, 2017,42(16):3080-3083. doi:10.1364/OL.42.003080.

    [63] [63] ZHANG Wentao, MALDONADO P, JIN Zuanming, et al. Ultrafast terahertz magnetometry[J]. Nature Communications, 2020, 11(1):4247. doi:10.1038/s41467-020-17935-6.

    Tools

    Get Citation

    Copy Citation Text

    HONG Huixiang, ZHANG Huiping, XU Yong, WU Shaohui, JIN Zuanming, PENG Yan. Research progress of ultrafast terahertz radiation in single-layer ferromagnets[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(8): 813

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 23, 2024

    Accepted: --

    Published Online: Sep. 23, 2024

    The Author Email: Huiping ZHANG (hpzhang@usst.edu.cn)

    DOI:10.11805/tkyda2024204

    Topics