Frontiers of Optoelectronics, Volume. 15, Issue 4, 12200(2022)

Organic photodiodes: device engineering and applications

Tong Shan, Xiao Hou, Xiaokuan Yin, and Xiaojun Guo*
Author Affiliations
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(176)

    [1] [1] García de Arquer, F.P., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2(3), 1–17 (2017)

    [2] [2] Tan, C.L., Mohseni, H.: Emerging technologies for high performance infrared detectors. Nanophotonics 7(1), 169–197 (2018)

    [3] [3] Rogalski, A., Kopytko, M., Martyniuk, P.: 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 28(3), 107–154 (2020)

    [4] [4] Saran, R., Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10(2), 81–92 (2016)

    [5] [5] Bruns, O.T., Bischof, T.S., Harris, D.K., Franke, D., Shi, Y., Riedemann, L., Bartelt, A., Jaworski, F.B., Carr, J.A., Rowlands, C.J., Wilson, M.W.B., Chen, O., Wei, H., Hwang, G.W., Montana, D.M., Coropceanu, I., Achorn, O.B., Kloepper, J., Heeren, J., So, P.T.C., Fukumura, D., Jensen, K.F., Jain, R.K., Bawendi, M.G.: Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1(4), 1–11 (2017)

    [6] [6] Xu, Y., Lin, Q.: Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7(1), 011315 (2020)

    [7] [7] Lau, Y.S., Lan, Z., Cai, L., Zhu, F.: High-performance solutionprocessed large-area transparent self-powered organic near-infrared photodetectors. Mater. Today Energy. 21, 100708 (2021)

    [8] [8] Ng, T.N., Wong, W.S., Chabinyc, M.L., Sambandan, S., Street, R.A.: Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92(21), 213303 (2008)

    [9] [9] Pierre, A., Deckman, I., Lechêne, P.B., Arias, A.C.: High detectivity allprinted organic photodiodes. Adv. Mater. 27(41), 6411–6417 (2015)

    [10] [10] Verstraeten, F., Gielen, S., Verstappen, P., Raymakers, J., Penxten, H., Lutsen, L., Vandewal, K., Maes, W.: Efficient and readily tuneable near-infrared photodetection up to 1500 nm enabled by thiadiazoloquinoxaline-based push–pull type conjugated polymers. J. Mater. Chem. C Mater. Opt. Electron. Devices. 8(29), 10098–10103 (2020)

    [11] [11] Guo, D., Yang, L., Zhao, J., Li, J., He, G., Yang, D., Wang, L., Vadim, A., Ma, D.: Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000. Mater. Horiz. 8(8), 2293–2302 (2021)

    [12] [12] Ding, N., Wu, Y., Xu, W., Lyu, J., Wang, Y., Zi, L., Shao, L., Sun, R., Wang, N., Liu, S., Zhou, D., Bai, X., Zhou, J., Song, H.: A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci. Appl. 11(1), 91 (2022)

    [13] [13] Jacoutot, P., Scaccabarozzi, A.D., Zhang, T., Qiao, Z., Aniés, F., Neophytou, M., Bristow, H., Kumar, R., Moser, M., Nega, A.D., Schiza, A., Dimitrakopoulou-Strauss, A., Gregoriou, V.G., Anthopoulos, T.D., Heeney, M., McCulloch, I., Bakulin, A.A., Chochos, C.L., Gasparini, N.: Infrared organic photodetectors employing ultralow bandgap polymer and non-fullerene acceptors for biometric monitoring. Small 18(15), e2200580 (2022)

    [14] [14] Fuentes-Hernandez, C., Chou, W.F., Khan, T.M., Diniz, L., Lukens, J., Larrain, F.A., Rodriguez-Toro, V.A., Kippelen, B.: Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370(6517), 698–701 (2020)

    [15] [15] Park, S., Fukuda, K., Wang, M., Lee, C., Yokota, T., Jin, H., Jinno, H., Kimura, H., Zalar, P., Matsuhisa, N., Umezu, S., Bazan, G.C., Someya, T.: Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30(34), e1802359 (2018)

    [16] [16] Chow, P.C.Y., Someya, T.: Organic photodetectors for nextgeneration wearable electronics. Adv. Mater. 32(15), e1902045 (2020)

    [17] [17] Wang, C., Zhang, X., Hu, W.: Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 49(3), 653–670 (2020)

    [18] [18] Simone, G., Dyson, M.J., Meskers, S.C.J., Janssen, R.A.J., Gelinck, G.H.: Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv. Funct. Mater. 30(20), 1904205 (2020)

    [19] [19] Ren, H., Chen, J.D., Li, Y.Q., Tang, J.X.: Recent progress in organic photodetectors and their applications. Adv. Sci. (Weinh.) 8(1), 2002418 (2021)

    [20] [20] Yokota, T., Fukuda, K., Someya, T.: Recent progress of flexible image sensors for biomedical applications. Adv. Mater. 33(19), e2004416 (2021)

    [21] [21] Matheus, L.E.M., Vieira, A.B., Vieira, L.F., Vieira, M.A., Gnawali, O.: Visible light communication: concepts, applications and challenges. IEEE Comm. Surv. Tutor. 21(4), 3204–3237 (2019)

    [22] [22] Lau, Y., Zhu, F.: Visualization of near-infrared light and applications. Chin. J. Liq. Crys. Disp. 36(1), 78–104 (2021)

    [23] [23] Naseer, N., Hong, K.S.: fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9, 3 (2015)

    [24] [24] Li, N., Eedugurala, N., Azoulay, J.D., Ng, T.N.: A filterless organic photodetector electrically switchable between visible and infrared detection. Cell Rep. Phys. Sci. 3(1), 100711 (2022)

    [25] [25] Zhang, D., Fuentes-Hernandez, C., Vijayan, R., Zhang, Y., Li, Y., Park, J.W., Wang, Y., Zhao, Y., Arora, N., Mirzazadeh, A., Do, Y., Cheng, T., Swaminathan, S., Starner, T., Andrew, T.L., Abowd, G.D.: Flexible computational photodetectors for selfpowered activity sensing. NPJ Flex. Electron. 6(1), 1–8 (2022)

    [26] [26] Li, N., Eedugurala, N., Leem, D.S., Azoulay, J.D., Ng, T.N.: Organic upconversion imager with dual electronic and optical readouts for shortwave infrared light detection. Adv. Funct. Mater. 31(16), 2100565 (2021)

    [27] [27] Li, N., Lan, Z., Lau, Y.S., Xie, J., Zhao, D., Zhu, F.: Swir photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction. Adv. Sci. (Weinh.) 7(14), 2000444 (2020)

    [28] [28] Du, X., Han, J., He, Z., Han, C., Wang, X., Wang, J., Jiang, Y., Tao, S.: Efficient organic upconversion devices for low energy consumption and high-quality noninvasive imaging. Adv. Mater. 33(42), e2102812 (2021)

    [29] [29] Yang, D., Zhou, X., Ma, D., Vadim, A., Ahamad, T., Alshehri, S.M.: Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%. Mater. Horiz. 5(5), 874–882 (2018)

    [30] [30] Tedde, S., Zaus, E., Furst, J., Henseler, D., Lugli, P.: Active pixel concept combined with organic photodiode for imaging devices. IEEE Electron Device Lett. 28(10), 893–895 (2007)

    [31] [31] Yokota, T., Nakamura, T., Kato, H., Mochizuki, M., Tada, M., Uchida, M., Lee, S., Koizumi, M., Yukita, W., Takimoto, A., Someya, T.: A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 3(2), 113–121 (2020)

    [32] [32] Zhao, C., Kanicki, J.: Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med. Phys. 41(9), 091902 (2014)

    [33] [33] Hou, X., Chen, S., Tang, W., Liang, J., Ouyang, B., Li, M., Song, Y., Shan, T., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Low-temperature solution-processed all organic integration for large-area and flexible high-resolution imaging. IEEE J. Electron Devices Soc. 10, 821–826 (2022)

    [34] [34] Gelinck, G.H., Kumar, A., Moet, D., van der Steen, J.L., Shafique, U., Malinowski, P.E., Myny, K., Rand, B.P., Simon, M., Rütten, W., Douglas, A., Jorritsma, J., Heremans, P., Andriessen, R.: X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 14(10), 2602–2609 (2013)

    [35] [35] Xing, S., Nikolis, V.C., Kublitski, J., Guo, E., Jia, X., Wang, Y., Spoltore, D., Vandewal, K., Kleemann, H., Benduhn, J., Leo, K.: Miniaturized Vis-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultrahigh specific detectivity above 1014 Jones. Adv. Mater. 33(44), e2102967 (2021)

    [36] [36] Tang, Z., Ma, Z., Sánchez-Díaz, A., Ullbrich, S., Liu, Y., Siegmund, B., Mischok, A., Leo, K., Campoy-Quiles, M., Li, W., Vandewal, K.: Polymer: fullerene bimolecular crystals for nearinfrared spectroscopic photodetectors. Adv. Mater. 29(33), 1702184 (2017)

    [37] [37] Chow, C.W., Wang, H.Y., Chen, C.H., Zan, H.W., Yeh, C.H., Meng, H.F.: Pre-distortion scheme to enhance the transmission performance of organic photo-detector (OPD) based visible light communication (VLC). IEEE Access 6, 7625–7630 (2018)

    [38] [38] Li, W., Li, S., Duan, L., Chen, H., Wang, L., Dong, G., Xu, Z.: Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Org. Electron. 37, 346–351 (2016)

    [39] [39] Lan, Z., Lau, Y.S., Cai, L., Han, J., Suen, C.W., Zhu, F.: Dualband organic photodetectors for dual-channel optical communications. Laser Photon. Rev. 16(7), 2100602 (2022)

    [40] [40] Strobel, N., Droseros, N., Kontges, W., Seiberlich, M., Pietsch, M., Schlisske, S., Lindheimer, F., Schroder, R.R., Lemmer, U., Pfannmoller, M., Banerji, N., Hernandez-Sosa, G.: Colorselective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater. 32(12), e1908258 (2020)

    [41] [41] Babics, M., Bristow, H., Zhang, W., Wadsworth, A., Neophytou, M., Gasparini, N., McCulloch, I.: Non-fullerene-based organic photodetectors for infrared communication. J. Mater. Chem. C Mater. Opt. Electron. Devices 9(7), 2375–2380 (2021)

    [42] [42] Lee, S.H., Yusoff, A., Lee, C., Yoon, S.C., Noh, Y.Y.: Toward color-selective printed organic photodetectors for high-resolution image sensors: from fundamentals to potential commercialization. Mater. Sci. Eng. Rep. 147, 100660 (2022)

    [43] [43] Song, J.K., Kim, M.S., Yoo, S., Koo, J.H., Kim, D.H.: Materials and devices for flexible and stretchable photodetectors and lightemitting diodes. Nano Res. 14(9), 2919–2937 (2021)

    [44] [44] Lan, Z., Lee, M.H., Zhu, F.: Recent advances in solution-processable organic photodetectors and applications in flexible electronics. Adv. Intell. Syst. 4(3), 2100167 (2022)

    [45] [45] Li, N., Mahalingavelar, P., Vella, J.H., Leem, D.S., Azoulay, J.D., Ng, T.N.: Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. Rep. 146, 100643 (2021)

    [46] [46] Simone, G., Dyson, M.J., Weijtens, C.H.L., Meskers, S.C.J., Coehoorn, R., Janssen, R.A.J., Gelinck, G.H.: On the origin of dark current in organic photodiodes. Adv. Opt. Mater. 8(1), 1901568 (2020)

    [47] [47] Fang, Y., Armin, A., Meredith, P., Huang, J.: Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13(1), 1–4 (2019)

    [48] [48] Lee, H., Park, C., Sin, D.H., Park, J.H., Cho, K.: Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 30(34), e1800453 (2018)

    [49] [49] Gaspar, H., Figueira, F., Pereira, L., Mendes, A., Viana, J.C., Bernardo, G.: Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials (Basel) 11(12), E2560 (2018)

    [50] [50] Brabec, C.J., Durrant, J.R.: Solution-processed organic solar cells. MRS Bull. 33(7), 670–675 (2008)

    [51] [51] Ma, L., Zhang, S., Wang, J., Xu, Y., Hou, J.: Recent advances in non-fullerene organic solar cells: from lab to fab. Chem. Commun. (Camb.) 56(92), 14337–14352 (2020)

    [52] [52] Dou, L., Liu, Y., Hong, Z., Li, G., Yang, Y.: Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115(23), 12633–12665 (2015)

    [53] [53] Pivrikas, A., Sariciftci, N.S., Juska, G., Osterbacka, R.: A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 15(8), 677–696 (2007)

    [54] [54] Ameri, T., Heumüller, T., Min, J., Li, N., Matt, G., Scherf, U., Brabec, C.J.: IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy Environ. Sci. 6(6), 1796–1801 (2013)

    [55] [55] Zhang, J., Tan, H.S., Guo, X., Facchetti, A., Yan, H.: Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3(9), 720–731 (2018)

    [56] [56] Liu, W., Zhang, R., Wei, Q., Zhu, C., Yuan, J., Gao, F., Zou, Y.: Manipulating molecular aggregation and crystalline behavior of A-DA’D-A type acceptors by side chain engineering in organic solar cells. Aggregate 3(3), e183 (2022)

    [57] [57] Zhang, X., Li, G., Mukherjee, S., Huang, W., Zheng, D., Feng, L.W., Chen, Y., Wu, J., Sangwan, V.K., Hersam, M.C., DeLongchamp, D.M., Yu, J., Facchetti, A., Marks, T.J.: Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 12(1), 2102172 (2022)

    [58] [58] Wang, Z., Zhu, L., Shuai, Z., Wei, Z.: A–π–D–π–A electrondonating small molecules for solution-processed organic solar cells: a review. Macromol. Rapid Commun. 38(22), 1700470 (2017)

    [59] [59] Shan, T., Ding, K., Yu, L., Wang, X., Zhang, Y., Zheng, X., Chen, C.C., Peng, Q., Zhong, H.: Spatially orthogonal 2d sidechains optimize morphology in all-small-molecule organic solar cells. Adv. Funct. Mater. 31(24), 2100750 (2021)

    [60] [60] Li, Y., Chen, H., Zhang, J.: Carrier blocking layer materials and application in organic photodetectors. Nanomaterials (Basel) 11(6), 1404 (2021)

    [61] [61] Lim, S.B., Ji, C.H., Oh, I.S., Oh, S.Y.: Reduced leakage current and improved performance of an organic photodetector using an ytterbium cathode interlayer. J. Mater. Chem. C Mater. Opt. Electron. Devices 4(22), 4920–4926 (2016)

    [62] [62] Bouthinon, B., Clerc, R., Verilhac, J., Racine, B., De Girolamo, J., Jacob, S., Lienhard, P., Joimel, J., Dhez, O., Revaux, A.: On the front and back side quantum efficiency differences in semitransparent organic solar cells and photodiodes. J. Appl. Phys. 123(12), 125501 (2018)

    [63] [63] Sato, Y., Kajii, H., Ohmori, Y.: Improved performance of polymer photodetectors using indium–tin-oxide modified by phosphonic acid-based self-assembled monolayer treatment. Org. Electron. 15(8), 1753–1758 (2014)

    [64] [64] Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J.L., Marder, S.R., Kahn, A., Kippelen, B.: A universal method to produce low-work function electrodes for organic electronics. Science 336(6079), 327–332 (2012)

    [65] [65] He, Z., Zhang, C., Xu, X., Zhang, L., Huang, L., Chen, J., Wu, H., Cao, Y.: Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv. Mater. 23(27), 3086–3089 (2011)

    [66] [66] Wang, T., Wang, Y., Zhu, L., Lv, L., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High sensitivity and fast response sol-gel ZnO electrode buffer layer based organic photodetectors with large linear dynamic range at low operating voltage. Org. Electron. 56, 51–58 (2018)

    [67] [67] Zhu, H.L., Choy, W.C., Sha, W.E., Ren, X.: Photovoltaic mode ultraviolet organic photodetectors with high on/off ratio and fast response. Adv. Opt. Mater. 2(11), 1082–1089 (2014)

    [68] [68] Deng, R., Yan, C., Deng, Y., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High-performance polymer photodetector using the non-thermal-and-non-ultraviolet–ozone-treated SnO2 interfacial layer. Physica Status Solidi (RRL) - Rapid Res. Lett. 14(3), 1900531 (2020)

    [69] [69] Zheng, Z., Wang, J., Bi, P., Ren, J., Wang, Y., Yang, Y., Liu, X., Zhang, S., Hou, J.: Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184 (2022)

    [70] [70] Lu, H., Lin, J., Wu, N., Nie, S., Luo, Q., Ma, C.Q., Cui, Z.: Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 106(9), 093302 (2015)

    [71] [71] Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013)

    [72] [72] Tam, K.C., Kubis, P., Maisch, P., Brabec, C.J., Egelhaaf, H.J.: Fully printed organic solar modules with bottom and top silver nanowire electrodes. Prog. Photovolt. Res. Appl. 30(5), 528–542 (2022)

    [73] [73] Cao, W., Li, J., Chen, H., Xue, J.: Transparent electrodes for organic optoelectronic devices: a review. J. Photon. Energy 4(1), 040990 (2014)

    [74] [74] Kim, D.H., Kim, K.S., Shim, H.S., Moon, C.K., Jin, Y.W., Kim, J.J.: A high performance semitransparent organic photodetector with green color selectivity. Appl. Phys. Lett. 105(21), 213301 (2014)

    [75] [75] Kim, H., Lee, K.T., Zhao, C., Guo, L.J., Kanicki, J.: Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode. Org. Electron. 20, 103–111 (2015)

    [76] [76] Zhang, H., Jenatsch, S., De Jonghe, J., Nüesch, F., Steim, R., Véron, A.C., Hany, R.: Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5(1), 9439 (2015)

    [77] [77] Qi, Z., Cao, J., Ding, L., Wang, J.: Transparent and transferrable organic optoelectronic devices based on WO3/Ag/WO3 electrodes. Appl. Phys. Lett. 106(5), 053304 (2015)

    [78] [78] Lee, D., So, S., Hu, G., Kim, M., Badloe, T., Cho, H., Kim, J., Kim, H., Qiu, C.-W., Rho, J.: Hyperbolic metamaterials: fusing (2022)

    [79] [79] Shan, T., Zhang, Y., Wang, Y., Xie, Z., Wei, Q., Xu, J., Zhang, M., Wang, C., Bao, Q., Wang, X., Chen, C.C., Huang, J., Chen, Q., Liu, F., Chen, L., Zhong, H.: Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nat. Commun. 11(1), 5585 (2020)

    [80] [80] Luo, D., Zhang, Y., Li, L., Shan, C., Liu, Q., Wang, Z., Choy, W.C., Kyaw, A.K.K.: Near-infrared non-fused ring acceptors with light absorption up to 1000 nm for efficient and low-energy loss organic solar cells. Mater. Today Energy 24, 100938 (2022)

    [81] [81] Li, Y., Huang, W., Zhao, D., Wang, L., Jiao, Z., Huang, Q., Wang, P., Sun, M., Yuan, G.: Recent progress in organic solar cells: a review on materials from acceptor to donor. Molecules 27(6), 1800 (2022)

    [82] [82] Wang, Z., Peng, Z., Xiao, Z., Seyitliyev, D., Gundogdu, K., Ding, L., Ade, H.: Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv. Mater. 32(49), e2005386 (2020)

    [83] [83] Wei, Q., Yuan, J., Yi, Y., Zhang, C., Zou, Y.: Y6 and its derivatives: molecular design and physical mechanism. Natl. Sci. Rev. 8(8), nwa121 (2021)

    [84] [84] Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., Zou, Y.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core. Joule 3(4), 1140–1151 (2019)

    [85] [85] Park, B., Jung, J., Lim, D.H., Lee, H., Park, S., Kyeong, M., Ko, S.J., Eom, S.H., Lee, S.H., Lee, C., Yoon, S.C.: Significant dark current suppression in organic photodetectors using side chain fluorination of conjugated polymer. Adv. Funct. Mater. 32(4), 2108026 (2022)

    [86] [86] Zhang, D., Zhao, D., Wang, Z., Yu, J.: Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2(7), 2188–2195 (2020)

    [87] [87] Biele, M., Montenegro Benavides, C., Hürdler, J., Tedde, S.F., Brabec, C.J., Schmidt, O.: Spray-coated organic photodetectors and image sensors with silicon-like performance. Adv. Mater. Technol. 4(1), 1800158 (2019)

    [88] [88] Huang, J., Lee, J., Vollbrecht, J., Brus, V.V., Dixon, A.L., Cao, D.X., Zhu, Z., Du, Z., Wang, H., Cho, K., Bazan, G.C., Nguyen, T.Q.: A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32(1), e1906027 (2020)

    [89] [89] Xu, Y., Yuan, J., Liang, S., Chen, J.D., Xia, Y., Larson, B.W., Wang, Y., Su, G.M., Zhang, Y., Cui, C., Wang, M., Zhao, H., Ma, W.: Simultaneously improved efficiency and stability in allpolymer solar cells by a p–i–n architecture. ACS Energy Lett. 4(9), 2277–2286 (2019)

    [90] [90] Shan, T., Hong, Y., Zhu, L., Wang, X., Zhang, Y., Ding, K., Liu, F., Chen, C.C., Zhong, H.: Achieving optimal bulk heterojunction in all-polymer solar cells by sequential processing with nonorthogonal solvents. ACS Appl. Mater. Interfaces 11(45), 42438–42446 (2019)

    [91] [91] Kim, M.S., Jang, W., Nguyen, T.Q., Wang, D.H.: Morphology inversion of a non-fullerene acceptor via adhesion controlled decal-coating for efficient conversion and detection in organic electronics. Adv. Funct. Mater. 31(38), 2103705 (2021)

    [92] [92] Zhong, Z., Bu, L., Zhu, P., Xiao, T., Fan, B., Ying, L., Lu, G., Yu, G., Huang, F., Cao, Y.: Dark current reduction strategy via a layer-by-layer solution process for a high-performance allpolymer photodetector. ACS Appl. Mater. Interfaces 11(8), 8350–8356 (2019)

    [93] [93] Sun, R., Guo, J., Sun, C., Wang, T., Luo, Z., Zhang, Z., Jiao, X., Tang, W., Yang, C., Li, Y., Min, J.: A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 12(1), 384–395 (2019)

    [94] [94] Wei, Y., Chen, H., Liu, T., Wang, S., Jiang, Y., Song, Y., Zhang, J., Zhang, X., Lu, G., Huang, F., Wei, Z., Huang, H.: Self-powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction. Adv. Funct. Mater. 31(52), 2106326 (2021)

    [95] [95] Xiong, S., Li, J., Peng, J., Dong, X., Qin, F., Wang, W., Sun, L., Xu, Y., Lin, Q., Zhou, Y.: Water transfer printing of multilayered near-infrared organic photodetectors. Adv. Opt. Mater. 10(1), 2101837 (2022)

    [96] [96] Huang, Z., Zhong, Z., Peng, F., Ying, L., Yu, G., Huang, F., Cao, Y.: Copper thiocyanate as an anode interfacial layer for efficient near-infrared organic photodetector. ACS Appl. Mater. Interfaces 13(1), 1027–1034 (2021)

    [97] [97] Xu, X., Zhou, X., Zhou, K., Xia, Y., Ma, W., Inganas, O.: Largearea, semitransparent, and flexible all-polymer photodetectors. Adv. Funct. Mater. 28(48), 1805570 (2018)

    [98] [98] Saracco, E., Bouthinon, B., Verilhac, J.M., Celle, C., Chevalier, N., Mariolle, D., Dhez, O., Simonato, J.P.: Work function tuning for high-performance solution-processed organic photodetectors with inverted structure. Adv. Mater. 25(45), 6534–6538 (2013)

    [99] [99] Binda, M., Iacchetti, A., Natali, D., Beverina, L., Sassi, M., Sampietro, M.: High detectivity squaraine-based near infrared photodetector with NA/cm2 dark current. Appl. Phys. Lett. 98(7), 073303 (2011)

    [100] [100] Zhou, X., Yang, D., Ma, D.: Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3(11), 1570–1576 (2015)

    [101] [101] Benavides, C.M., Murto, P., Chochos, C.L., Gregoriou, V.G., Avgeropoulos, A., Xu, X., Bini, K., Sharma, A., Andersson, M.R., Schmidt, O., Brabec, C.J., Wang, E., Tedde, S.F.: Highperformance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer. ACS Appl. Mater. Interfaces 10(15), 12937–12946 (2018)

    [102] [102] Sim, K.M., Yoon, S., Kim, S.K., Ko, H., Hassan, S.Z., Chung, D.S.: Surfactant-induced solubility control to realize water-processed high-precision patterning of polymeric semiconductors for full color organic image sensor. ACS Nano 14(1), 415–421 (2020)

    [103] [103] Lan, Z., Zhu, F.: Electrically switchable color-selective organic photodetectors for full-color imaging. ACS Nano 15(8), 13674–13682 (2021)

    [104] [104] Yang, J., Huang, J., Li, R., Li, H., Sun, B., Lin, Q., Wang, M., Ma, Z., Vandewal, K., Tang, Z.: Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem. Mater. 33(13), 5147–5155 (2021)

    [105] [105] Lan, Z., Lau, Y.S., Wang, Y., Xiao, Z., Ding, L., Luo, D., Zhu, F.: Filter-free band-selective organic photodetectors. Adv. Opt. Mater. 8(24), 2001388 (2020)

    [106] [106] Vanderspikken, J., Maes, W., Vandewal, K.: Wavelength-selective organic photodetectors. Adv. Funct. Mater. 31(36), 2104060 (2021)

    [107] [107] Schembri, T., Kim, J.H., Liess, A., Stepanenko, V., Stolte, M., Würthner, F.: Semitransparent layers of social self-sorting merocyanine dyes for ultranarrow bandwidth organic photodiodes. Adv. Opt. Mater. 9(15), 2100213 (2021)

    [108] [108] Wang, Y., Kublitski, J., Xing, S., Dollinger, F., Spoltore, D., Benduhn, J., Leo, K.: Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing. Mater. Horiz. 9(1), 220–251 (2022)

    [109] [109] Armin, A., Jansen-van Vuuren, R.D., Kopidakis, N., Burn, P.L., Meredith, P.: Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6(1), 6343 (2015)

    [110] [110] Wang, W., Zhang, F., Du, M., Li, L., Zhang, M., Wang, K., Wang, Y., Hu, B., Fang, Y., Huang, J.: Highly narrowband photomultiplication type organic photodetectors. Nano Lett. 17(3), 1995–2002 (2017)

    [111] [111] Xie, B., Xie, R., Zhang, K., Yin, Q., Hu, Z., Yu, G., Huang, F., Cao, Y.: Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11(1), 2871 (2020)

    [112] [112] Xing, S., Wang, X., Guo, E., Kleemann, H., Leo, K.: Organic thin-film red-light photodiodes with tunable spectral response via selective exciton activation. ACS Appl. Mater. Interfaces 12(11), 13061–13067 (2020)

    [113] [113] Wang, C., Zhang, C., Chen, Q., Chen, L.: Improving the photomultiplication in organic photodetectors with narrowband response by interfacial engineering. Acta Chim. Sin. 79(8), 1030–1036 (2021)

    [114] [114] ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639 (1995)

    [115] [115] Xiong, J., Wu, S.-T.: Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight 1(3), 1–20 (2021)

    [116] [116] Du, Y., Zou, C.L., Zhang, C., Wang, K., Qiao, C., Yao, J., Zhao, Y.S.: Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 9(1), 151 (2020)

    [117] [117] Zang, C., Liu, S., Xu, M., Wang, R., Cao, C., Zhu, Z., Zhang, J., Wang, H., Zhang, L., Xie, W., Lee, C.S.: Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10(1), 116 (2021)

    [118] [118] Zhao, Z., Xu, C., Ma, Y., Yang, K., Liu, M., Zhu, X., Zhou, Z., Shen, L., Yuan, G., Zhang, F.: Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture. Adv. Funct. Mater. 32(29), 2203606 (2022)

    [119] [119] Wang, J., Ullbrich, S., Hou, J.L., Spoltore, D., Wang, Q., Ma, Z., Tang, Z., Vandewal, K.: Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response. ACS Photon. 6(6), 1393–1399 (2019)

    [120] [120] Siegmund, B., Mischok, A., Benduhn, J., Zeika, O., Ullbrich, S., Nehm, F., Bohm, M., Spoltore, D., Frob, H., Korner, C., Leo, K., Vandewal, K.: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8(1), 15421 (2017)

    [121] [121] Kublitski, J., Fischer, A., Xing, S., Baisinger, L., Bittrich, E., Spoltore, D., Benduhn, J., Vandewal, K., Leo, K.: Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12(1), 4259 (2021)

    [122] [122] Wang, Y., Siegmund, B., Tang, Z., Ma, Z., Kublitski, J., Xing, S., Nikolis, V.C., Ullbrich, S., Li, Y., Benduhn, J., Spoltore, D., Vandewal, K., Leo, K.: Stacked dual-wavelength near-infrared organic photodetectors. Adv. Opt. Mater. 9(6), 2001784 (2021)

    [123] [123] Suganuma, N., Heo, C.J., Minami, D., Yun, S., Park, S., Lim, Y., Fang, F., Choi, B., Park, K.B.: High speed response organic photodetectors with cascade buffer layers. Adv. Electron. Mater. 8(2), 2100539 (2022)

    [124] [124] Saggar, S., Sanderson, S., Gedefaw, D., Pan, X., Philippa, B., Andersson, M.R., Lo, S.C., Namdas, E.B.: Toward faster organic photodiodes: tuning of blend composition ratio. Adv. Funct. Mater. 31(19), 2010661 (2021)

    [125] [125] Salamandra, L., La Notte, L., Fazolo, C., Di Natali, M., Penna, S., Mattiello, L., Cinà, L., Del Duca, R., Reale, A.: A comparative study of organic photodetectors based on P3HT and PTB7 polymers for visible light communication. Org. Electron. 81, 105666 (2020)

    [126] [126] Liu, J., Jiang, J., Wang, S., Li, T., Jing, X., Liu, Y., Wang, Y., Wen, H., Yao, M., Zhan, X., Shen, L.: Fast response organic tandem photodetector for visible and near-infrared digital optical communications. Small 17(43), e2101316 (2021)

    [127] [127] Shen, L., Fang, Y., Wang, D., Bai, Y., Deng, Y., Wang, M., Lu, Y., Huang, J.: A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28(48), 10794–10800 (2016)

    [128] [128] Wang, X., Wang, J., Zhao, H., Jin, H., Yu, J.: Detectivity enhancement of double-layer organic photodetectors consisting of solution-processed interconnecting layers. Mater. Lett. 243, 81–83 (2019)

    [129] [129] Xing, S., Kublitski, J., Hanisch, C., Winkler, L.C., Li, T.Y., Kleemann, H., Benduhn, J., Leo, K.: Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv. Sci. (Weinh.) 9(7), e2105113 (2022)

    [130] [130] Shi, L., Liang, Q., Wang, W., Zhang, Y., Li, G., Ji, T., Hao, Y., Cui, Y.: Research progress in organic photomultiplication photodetectors. Nanomaterials (Basel) 8(9), 713 (2018)

    [131] [131] Yan, Y., Wu, X., Chen, Q., Liu, Y., Chen, H., Guo, T.: High-performance low-voltage flexible photodetector arrays based on allsolid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 11(22), 20214–20224 (2019)

    [132] [132] Lv, L., Dang, W., Wu, X., Chen, H., Wang, T., Qin, L., Wei, Z., Zhang, K., Shen, G., Huang, H.: Flexible short-wave infrared image sensors enabled by high-performance polymeric photodetectors. Macromolecules 53(23), 10636–10643 (2020)

    [133] [133] Webster, J.G.: Design of pulse oximeters. CRC Press, Boca Raton (1997)

    [134] [134] Lochner, C.M., Khan, Y., Pierre, A., Arias, A.C.: All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5(1), 5745 (2014)

    [135] [135] Khan, Y., Han, D., Pierre, A., Ting, J., Wang, X., Lochner, C.M., Bovo, G., Yaacobi-Gross, N., Newsome, C., Wilson, R., Arias, A.C.: A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. U.S.A. 115(47), E11015–E11024 (2018)

    [136] [136] Eun, H.J., Lee, H., Shim, Y., Seo, G.U., Lee, A.Y., Park, J.J., Heo, J., Park, S., Kim, J.H.: Strain-durable dark current in nearinfrared organic photodetectors for skin-conformal photoplethysmographic sensors. iScience 25(5), 104194 (2022)

    [137] [137] Pan, T., Liu, S., Zhang, L., Xie, W., Yu, C.: A flexible, multifunctional, optoelectronic anticounterfeiting device from highperformance organic light-emitting paper. Light Sci. Appl. 11(1), 59 (2022)

    [138] [138] Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., Someya, T.: Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)

    [139] [139] Khan, Y., Han, D., Ting, J., Ahmed, M., Nagisetty, R., Arias, A.C.: Organic multi-channel optoelectronic sensors for wearable health monitoring. IEEE Access 7, 128114–128124 (2019)

    [140] [140] Lee, H., Kim, E., Lee, Y., Kim, H., Lee, J., Kim, M., Yoo, H.J., Yoo, S.: Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4(11), eaas9530 (2018)

    [141] [141] Park, Y., Fuentes-Hernandez, C., Kim, K., Chou, W.F., Larrain, F.A., Graham, S., Pierron, O.N., Kippelen, B.: Skin-like lownoise elastomeric organic photodiodes. Sci. Adv. 7(51), eabj6565 (2021)

    [142] [142] Pierre, A., Arias, A.C.: Solution-processed image sensors on flexible substrates. Flex. Print. Electron. 1(4), 043001 (2016)

    [143] [143] Hou, X., Tang, W., Chen, S., Liang, J., Xu, H., Ouyang, B., Li, M., Song, Y., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Large area and flexible organic active matrix image sensor array fabricated by solution coating processes at low temperature. In: Proceedings of 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 1-3 (2021).

    [144] [144] Wu, Y.L., Fukuda, K., Yokota, T., Someya, T.: A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv. Mater. 31(43), e1903687 (2019)

    [145] [145] Tordera, D., van Breemen, A., Kronemeijer, A., van der Steen, J.L., Peeters, B., Shanmugan, S., Akkerman, H., Gelinck, G.: Flexible and large-area imagers using organic photodetectors. In: Organic Flexible Electronics, pp 575-597. Elsevier, Amsterdam (2021).

    [146] [146] Yang, W., Qiu, W., Georgitzikis, E., Simoen, E., Serron, J., Lee, J., Lieberman, I., Cheyns, D., Malinowski, P., Genoe, J., Chen, H., Heremans, P.: Mitigating dark current for high-performance nearinfrared organic photodiodes via charge blocking and defect passivation. ACS Appl. Mater. Interfaces 13(14), 16766–16774 (2021)

    [147] [147] Han, M.G., Park, K.B., Bulliard, X., Lee, G.H., Yun, S., Leem, D.S., Heo, C.J., Yagi, T., Sakurai, R., Ro, T., Lim, S.J., Sul, S., Na, K., Ahn, J., Jin, Y.W., Lee, S.: Narrow-band organic photodiodes for high-resolution imaging. ACS Appl. Mater. Interfaces 8(39), 26143–26151 (2016)

    [148] [148] Sakai, T., Takagi, T., Imamura, K., Mineo, K., Yakushiji, H., Hashimoto, Y., Aotake, T., Sadamitsu, Y., Sato, H., Aihara, S.: Color-filter-free three-layer-stacked image sensor using blue/green-selective organic photoconductive films with thin-film transistor circuits on CMOS image sensors. ACS Appl. Electron. Mater. 3(7), 3085–3095 (2021)

    [149] [149] Li, Y., Luo, H., Mao, L., Yu, L., Li, X., Jin, L., Zhang, J.: A solution-processed hole-transporting layer based on p-type CUCRO2 for organic photodetector and image sensor. Adv. Mater. Interfaces 8(20), 2100801 (2021)

    [150] [150] Baierl, D., Pancheri, L., Schmidt, M., Stoppa, D., Dalla Betta, G.F., Scarpa, G., Lugli, P.: A hybrid CMOS-imager with a solution-processable polymer as photoactive layer. Nat. Commun. 3(1), 1175 (2012)

    [151] [151] Shekhar, H., Fenigstein, A., Leitner, T., Lavi, B., Veinger, D., Tessler, N.: Hybrid image sensor of small molecule organic photodiode on CMOS-integration and characterization. Sci. Rep. 10(1), 7594 (2020)

    [152] [152] Wu, P., Ye, L., Tong, L., Wang, P., Wang, Y., Wang, H., Ge, H., Wang, Z., Gu, Y., Zhang, K., Yu, Y., Peng, M., Wang, F., Huang, M., Zhou, P., Hu, W.: Van der Waals two-color infrared photodetector. Light Sci. Appl. 11(1), 6 (2022)

    [153] [153] Dehzangi, A., Li, J., Razeghi, M.: Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light Sci. Appl. 10(1), 17 (2021)

    [154] [154] Feng, Z., Tang, T., Wu, T., Yu, X., Zhang, Y., Wang, M., Zheng, J., Ying, Y., Chen, S., Zhou, J., Fan, X., Zhang, D., Li, S., Zhang, M., Qian, J.: Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 10(1), 197 (2021)

    [155] [155] Li, C., Wang, H., Wang, F., Li, T., Xu, M., Wang, H., Wang, Z., Zhan, X., Hu, W., Shen, L.: Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for largedynamic- range imaging. Light Sci. Appl. 9(1), 31 (2020)

    [156] [156] Seo, H., Aihara, S., Watabe, T., Ohtake, H., Kubota, M., Egami, N.: Color sensors with three vertically stacked organic photodetectors. Jpn. J. Appl. Phys. 46(49), L1240–L1242 (2007)

    [157] [157] Lim, S.J., Leem, D.S., Park, K.B., Kim, K.S., Sul, S., Na, K., Lee, G.H., Heo, C.J., Lee, K.H., Bulliard, X., Satoh, R., Yagi, T., Ro, T., Im, D., Jung, J., Lee, M., Lee, T.Y., Han, M.G., Jin, Y.W., Lee, S.: Organic-on-silicon complementary metal-oxidesemiconductor colour image sensors. Sci. Rep. 5(1), 7708 (2015)

    [158] [158] Sato, S., Yamashita, T., Miyazaki, M.: UHD-2/8K camera recorder using organic cmos image sensor. SMPTE Motion Imaging J. 129(6), 52–60 (2020)

    [159] [159] Lim, Y., Yun, S., Minami, D., Choi, T., Choi, H., Shin, J., Heo, C.J., Leem, D.S., Yagi, T., Park, K.B., Kim, S.: Green-lightselective organic photodiodes with high detectivity for CMOS color image sensors. ACS Appl. Mater. Interfaces 12(46), 51688–51698 (2020)

    [160] [160] Banach, M., Markham, S., Agaiby, R., Too, P.: Low leakage organic backplanes for high pixel density optical sensors. SID Symp. Digest Tech. Papers 49(1), 90–91 (2018)

    [161] [161] Tordera, D., Peeters, B., Akkerman, H.B., Breemen, A.J.J.M., Maas, J., Shanmugam, S., Kronemeijer, A.J., Gelinck, G.H.: A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4(11), 1900651 (2019)

    [162] [162] Kamada, T., Hatsumi, R., Watanabe, K., Kawashima, S., Katayama, M., Adachi, H., Ishitani, T., Kusunoki, K., Kubota, D., Yamazaki, S.: OLED display incorporating organic photodiodes for fingerprint imaging. J. Soc. Inf. Disp. 27(6), 361–371 (2019)

    [163] [163] Xu, Y., Ruan, C., Zhou, L., Zou, J., Xu, M., Wu, W., Wang, L., Peng, J.A.: 256 × 256 50-μm pixel pitch OPD image sensor based on an IZO TFT backplane. IEEE Sens. J. 21(18), 20824–20832 (2021)

    [164] [164] Eckstein, R., Strobel, N., Rodlmeier, T., Glaser, K., Lemmer, U., Hernandez-Sosa, G.: Fully digitally printed image sensor based on organic photodiodes. Adv. Opt. Mater. 6(5), 1701108 (2018)

    [165] [165] Posar, J.A., Davis, J., Alnaghy, S., Wilkinson, D., Cottam, S., Lee, D.M., Thompson, K.L., Holmes, N.P., Barr, M., Fahy, A., Nicolaidis, N.C., Louie, F., Fraboni, B., Sellin, P.J., Lerch, M.L.F., Rosenfeld, A.B., Petasecca, M., Griffith, M.J.: Polymer photodetectors for printable, flexible, and fully tissue equivalent X-ray detection with zero-bias operation and ultrafast temporal responses. Adv. Mater. Technol. 6(9), 2001298 (2021)

    [166] [166] van Breemen, A.J.J.M., Simon, M., Tousignant, O., Shanmugam, S., van der Steen, J.-L., Akkerman, H.B., Kronemeijer, A., Ruetten, W., Raaijmakers, R., Alving, L., Jacobs, J., Malinowski, P.E., De Roose, F., Gelinck, G.H.: Curved digital X-ray detectors. NPJ Flex. Electron. 4(1), 1–8 (2020)

    [167] [167] Li, A., Yao, C., Xia, J., Wang, H., Cheng, Q., Penty, R., Fainman, Y., Pan, S.: Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11(1), 174 (2022)

    [168] [168] Yang, Z., Albrow-Owen, T., Cai, W., Hasan, T.: Miniaturization of optical spectrometers. Science 371(6528), eabe0722 (2021)

    [169] [169] Vega-Colado, C., Arredondo, B., Torres, J.C., López-Fraguas, E., Vergaz, R., Martín-Martín, D., Del Pozo, G., Romero, B., Apilo, P., Quintana, X., Geday, M.A., De Dios, C., Sánchez-Pena, J.M.: An all-organic flexible visible light communication system. Sensors (Basel) 18(9), 3045 (2018)

    [170] [170] Haigh, P.A., Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I.: Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications. J. Lightwave Technol. 30(19), 3081–3088 (2012)

    [171] [171] Dong, Y., Shi, M., Yang, X., Zeng, P., Gong, J., Zheng, S., Zhang, M., Liang, R., Ou, Q., Chi, N., Zhang, S.: Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25(18), 21926–21934 (2017)

    [172] [172] Cao, J., Shan, T., Wang, J.K., Xu, Y.X., Ren, X., Zhong, H.: Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 165, 354–360 (2019)

    [173] [173] Chi, N., Hu, F., Zhou, Y.: The challenges and prospects of high-speed visible light communication technology. ZTE Technol. J. 25(5), 56–61 (2019)

    [174] [174] Li, L., Zhao, H., Liu, C., Li, L., Cui, T.J.: Intelligent metasurfaces: control, communication and computing. eLight 2(7), 1–24 (2022)

    [175] [175] Tavakkolnia, I., Jagadamma, L.K., Bian, R., Manousiadis, P.P., Videv, S., Turnbull, G.A., Samuel, I.D.W., Haas, H.: Organic photovoltaics for simultaneous energy harvesting and highspeed MIMO optical wireless communications. Light Sci. Appl. 10(1), 41 (2021)

    [176] [176] Ghassemlooy, Z., Haigh, P.A., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I., Rajbhandari, S.: Visible light communications: 375 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization. Photon. Res. 1(2), 65 (2013)

    Tools

    Get Citation

    Copy Citation Text

    Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo. Organic photodiodes: device engineering and applications[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW ARTICLE

    Received: May. 19, 2022

    Accepted: Aug. 9, 2022

    Published Online: Jan. 22, 2023

    The Author Email: Guo Xiaojun (x.guo@sjtu.edu.cn)

    DOI:10.1007/s12200-022-00049-w

    Topics