Laser & Optoelectronics Progress, Volume. 51, Issue 11, 110008(2014)

Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources

Zhang Libin* and Chen Shaowu
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity [J]. Phys Rev Lett, 2004, 93(8): 083904.

    [2] [2] Del'Haye P, Schliesser A, Arcizet O, et al.. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217.

    [3] [3] Wu Xuejian, Li Yan, Wei Haoyun, et al.. Femtosecond optical frequency combs for precision measurement applications [J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

    [4] [4] Zou Changling, Dong Chunhua, Cui Jinming, et al.. Whispering gallery mode optical microresonators: fundamentals and applications [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(11): 1155-1175.

    [5] [5] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559.

    [6] [6] Del'Haye P, Arcizet O, Schliesser A, et al.. Full stabilization of a microresonator-based optical frequency comb [J]. Phys Rev Lett, 2008, 101(5): 053903.

    [7] [7] Foster M A, Levy J S, Kuzucu O, et al.. Silicon-based monolithic optical frequency comb source [J]. Opt Express, 2011, 19(15): 14233-14239.

    [8] [8] Del′Haye P, Papp S B, Diddams S A. Hybrid electro-optically modulated microcombs [J]. Phys Rev Lett, 2012, 109(26): 263901.

    [9] [9] Papp S B, Diddams S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb [J]. Phys Rev A, 2011, 84(5): 053833.

    [10] [10] Ferdous F, Miao H, Leaird D E, et al.. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J]. Nat Photon, 2011, 5: 770-776.

    [11] [11] Levy J S, Gondarenko A, Foster M A, et al.. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J]. Nat Photon, 2010, 4: 37-40.

    [12] [12] Levy J S, Saha K, Okawachi Y, et al.. High-performance silicon-nitride-based multiple-wavelength source [J]. IEEE Photon Technol Lett, 2012, 24(16): 1375-1377.

    [13] [13] Johnson A R, Okawachi Y, Lamont M R E, et al.. Microresonator-based comb generation without an external laser source [J]. Opt Express, 2014, 22(2): 1394-1401.

    [14] [14] Godey C, Balakireva I, Coillet A, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: Case of normal dispersion [J]. Phys Rev A, 2014, 89(6): 063814.

    [15] [15] Balakireva I, Coillet A, Godey C, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: Case of anomalous dispersion [J]. arXiv:1308.2542v1, 2013.

    [16] [16] Coillet A, Chembo Y K. Routes to spatiotemporal chaos in Kerr optical frequency combs [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1): 013113.

    [17] [17] Leo F, Coen S, Kockaert P, et al.. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer [J]. Nat Photon, 2010, 4: 471-476.

    [18] [18] Herr T, Brasch V, Jost J D, et al.. Temporal solitons in optical microresonators [J]. Nat Photon, 2014, 8: 145-152.

    [19] [19] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whisperinggallery-mode resonators [J]. Phys Rev A, 2010, 82(3): 033801.

    [20] [20] Chembo Y K, Strekalov D V, Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators [J]. Phys Rev Lett, 2010, 104(10): 103902.

    [21] [21] Coen S, Randle H G, Sylvestre T, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model [J]. Opt Lett, 2013, 38(1): 37-39.

    [22] [22] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whisperinggallery-mode resonators [J]. Phys Rev A, 2013, 87(5): 053852.

    [23] [23] Coillet A, Balakireva I, Henriet R, et al.. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators [J]. IEEE Photonics J, 2013, 5(4): 6100409.

    [24] [24] Agrawal G P. Nonlinear Fiber Optics [M]. 3rd ed. Burlington: Academic Press, 2001.

    [25] [25] Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al.. Numerical study of supercontinuum generation in photonic crystal fibers with two zero dispersion wavelengths [J]. Chinese J Lasers, 2012, 39(s2): s205002.

    [27] [27] Ma Li, Zhu Hongliang, Liang Song, et al.. DFB laser array monolithically integrated with MMI combiner and SOA [J]. J Optoelectronics·Laser, 2013, 24(3): 424-428.

    [28] [28] Miao Xuefeng, Wang Tianshu, Zhou Xuefang, et al.. A tunable multiwavelength Brillouin-erbium fiber laser [J]. Chinese J Lasers, 2012, 39(6): 0602010.

    [29] [29] Jiang Yufeng, Zhao Xin, Wang Jian, et al.. Robust and controllable generation of frequency combs in microresonators with selected sideband feedback [C]. Proceedings of the Optical Fiber Communication Conference, 2014.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Libin, Chen Shaowu. Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 16, 2014

    Accepted: --

    Published Online: Nov. 7, 2014

    The Author Email: Libin Zhang (zhanglibin@semi.ac.cn)

    DOI:10.3788/lop51.110008

    Topics