Infrared and Laser Engineering, Volume. 51, Issue 3, 20220082(2022)

Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)

Yaoyuan Lei1,2, Qikai Chen1,2, Yitian Liu1,2, and Yaoguang Ma1,2
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 2International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    References(131)

    [1] X Li, Y Huang, P Zhang, et al. Infrared imaging system and applications. Laser & Infrared, 44, 229-234(2014).

    [2] Y Pan, Y Zhao, F Zhang. IR fingerprint spectrum and its analyzing method. Modern Instruments, 1-13(2000).

    [3] F Neubrech, C Huck, K Weber, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chemical Reviews, 117, 5110-5145(2017).

    [4] X Yang, Z Sun, T Low, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 30, 1704896(2018).

    [5] H Zhang, J Wang, N Li. Surface-enhanced infrared absorption. Scientia Sinica Physica, Mechanica & Astronomica, 49, 124204(2019).

    [6] H L Wang, E M You, R Panneerselvam, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light:Science & Applications, 10, 161(2021).

    [7] L Dong, X Yang, C Zhang, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Letters, 17, 5768-5774(2017).

    [8] D Yoo, D A Mohr, F Vidal-Codina, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Letters, 18, 1930-1936(2018).

    [9] A Hartstein, J R Kirtley, J C Tsang. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Physical Review Letters, 45, 201-204(1980).

    [10] N Li, H Yin, X Zhuo, et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption. Advanced Optical Materials, 6, 1800436(2018).

    [11] B Cerjan, X Yang, P Nordlander, et al. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics, 3, 354-360(2016).

    [12] A Leitis, M L Tseng, A John-Herpin, et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Advanced Materials, 33, 2102232(2021).

    [13] D Rodrigo, O Limaj, D Janner, et al. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [14] C Wu, X Guo, H Hu, et al. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 68, 148103(2019).

    [15] L Kuhner, M Hentschel, U Zschieschang, et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging. ACS Sensors, 2, 655-662(2017).

    [16] D Rodrigo, A Tittl, N Ait-Bouziad, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 9, 2160(2018).

    [17] Y Zhu, Z Li, Z Hao, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light:Science & Applications, 7, 67(2018).

    [18] C V Hoang, M Oyama, O Saito, et al. Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy. Scientific Reports, 3, 1175(2013).

    [19] X Chong, Y Zhang, E Li, et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sensors, 3, 230-238(2018).

    [20] H Hu, X Yang, X Guo, et al. Gas identification with graphene plasmons. Nature Communications, 10, 1131(2019).

    [21] H Zhou, X Hui, D Li, et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Advanced Science, 7, 2001173(2020).

    [22] J Fonollosa, R Rubio, S Hartwig, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B:Chemical, 132, 498-507(2008).

    [23] R Soref. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4, 495-497(2010).

    [24] W Shen, M and Yu J Xue. Long wave infrared fast objective with wide field of view. Acta Photonica Sinica, 33, 460-463(2004).

    [25] L Zhang, L Chen, Y Fan, et al. Development of mid-infrared transmitting glasses window and applications. Acta Optica Sinica, 31, 296-304(2011).

    [26] B Tang, Z Wang, Y Fan, et al. Trends and status in mid-infrared glasses. Infrared and Laser Engineering, 37, 311-314(2008).

    [27] S Dai, H Chen, M Li, et al. Chalcogenide glasses and their infrared optical applications. Infrared and Laser Engineering, 41, 847-852(2012).

    [28] L Huang, Z Coppens, K Hallman, et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens. Optical Materials Express, 11, 2907-2914(2021).

    [29] S Zhang, M H Kim, F Aieta, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 24, 18024-18034(2016).

    [30] H Zuo, D Y Choi, X Gai, et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging. Advanced Optical Materials, 5, 1700585(2017).

    [31] Q Fan, M Liu, C Yang, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 201104(2018).

    [32] N Song, N Xu, D Shan, et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials, 11, 2760(2021).

    [33] C Yan, X Li, M Pu, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Applied Physics Letters, 114, 161904(2019).

    [34] G Cao, H-X Xu, L-M Zhou, et al. Infrared metasurface-enabled compact polarization nanodevices. Materials Today, 50, 499-515(2021).

    [35] Y Yao, R Shankar, M A Kats, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 14, 6526-6532(2014).

    [36] A Tittl, A K Michel, M Schaferling, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 27, 4597-4603(2015).

    [37] S Jiang, J Li, J Li, et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry. Optics Express, 28, 22617-22629(2020).

    [38] L Yong-qian, G Yong-jun, S Lei, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region. Optical and Precision Engineering, 22, 2998-3003(2014).

    [39] N Yu, P Genevet, M A Kats, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [40] Jingdong Wang, Wencheng Ye, Weiting Zhang, et al. Design of infrared metasurfaces splitter arrays. Optical and Precision Engineering, 29, 674-681(2021).

    [41] Yitian Liu, Qikai Chen, Zhiyuan Tang, et al. Research progress of aberration analysis and imaging technology based on metalens. Chinese Optics, 14, 831-850(2021).

    [42] Yilin Wang, Qingbin Fan, Ting Xu. Progress of advanced imaging applications based on electromagnetic metalens. Infrared and Laser Engineering, 50, 20211026(2021).

    [43] Tianyou Li, Lingling Huang, Yongtian Wang. The principle and research progress of metasurfaces. Chinese Optics, 10, 523-540(2017).

    [44] N Yu, F Aieta, P Genevet, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 12, 6328-6333(2012).

    [45] A Safaei, A Vázquez-Guardado, D Franklin, et al. High-efficiency broadband mid-infrared flat lens. Advanced Optical Materials, 6, 1800216(2018).

    [46] C Pfeiffer, A Grbic. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 110, 197401(2013).

    [47] A E H Love. The integration of the equations of propagation of electric waves. Philosophical Transactions of the Royal Society of London. Series A, 197, 1-45(1901).

    [48] S A Schelkunoff. Some equivalence theorems of electromagnetics and their application to radiation problems. The Bell System Technical Journal, 15, 92-112(1936).

    [49] A Epstein, G V Eleftheriades. Huygens’ metasurfaces via the equivalence principle: design and applications. Journal of the Optical Society of America B, 33, A31-A50(2016).

    [50] S Campione, L I Basilio, L K Warne, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces. Optics Express, 23, 2293-2307(2015).

    [51] L Zhang, J Ding, H Zheng, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 9, 1481(2018).

    [52] A Leitis, A Heßler, S Wahl, et al. All‐dielectric programmable Huygens' metasurfaces. Advanced Functional Materials, 30, 1910259(2020).

    [53] M Y Shalaginov, S An, F Yang, et al. Single-element diffraction-limited fisheye metalens. Nano Letters, 20, 7429-7437(2020).

    [54] X Li, X Ma, X Luo. Principles and applications of metasurfaces with phase modulation. Opto-Electronic Engineering, 44, 255-275(2017).

    [55] S Pancharatnam. Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences - Section A, 44, 398-417(1956).

    [56] M V Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392, 45-57(1984).

    [57] M L Tseng, Y Jahani, A Leitis, et al. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics, 8, 47-60(2021).

    [58] A Tittl, A John-Herpin, A Leitis, et al. Metasurface-based molecular biosensing aided by artificial intelligence. Angewandte Chemie International Edition, 58, 14810-14822(2019).

    [59] M Osawa, M Ikeda. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. The Journal of Physical Chemistry, 95, 9914-9919(1991).

    [60] M Osawa. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bulletin of the Chemical Society of Japan, 70, 2861-2880(1997).

    [61] G T Merklin, P R Griffiths. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films. Langmuir, 13, 6159-6163(1997).

    [62] T Wadayama, M Takada, K Sugiyama, et al. Infrared absorption enhancement of C60 on silver islands: contribution of charge transfer and collective electron resonance. Physical Review B, 66, 193401(2002).

    [63] Z Yujun, Devi M Shyamala, H Travis, et al. Review of mid-infrared plasmonic materials. Journal of Nanophotonics, 9, 1-21(2015).

    [64] F Le, D W Brandl, Y A Urzhumov, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano, 2, 707-718(2008).

    [65] C W Hsu, B Zhen, A D Stone, et al. Bound states in the continuum. Nature Reviews Materials, 1, 16048(2016).

    [66] M Rybin, Y Kivshar. Supercavity lasing. Nature, 541, 164-165(2017).

    [67] M V Rybin, K L Koshelev, Z F Sadrieva, et al. High-Q supercavity modes in subwavelength dielectric resonators. Physical Review Letters, 119, 243901(2017).

    [68] K Koshelev, S Lepeshov, M Liu, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Physical Review Letters, 121, 193903(2018).

    [69] K Ou, F Yu, G Li, et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 6, eabc0711(2020).

    [70] Q Fan, Y Wang, M Liu, et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 43, 6005-6008(2018).

    [71] M Jung, S Dutta-Gupta, N Dabidian, et al. Polarimetry using graphene-integrated anisotropic metasurfaces. ACS Photonics, 5, 4283-4288(2018).

    [72] J Wei, Y Li, L Wang, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).

    [73] J Bai, C Wang, X Chen, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Research, 7, 1051-1060(2019).

    [74] X Li, H Wang, X Xu, et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces. Optics Communications, 484, 126690(2021).

    [75] Y Chen, S Pu, C Wang, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity. Optics Letters, 46, 1930-1933(2021).

    [76] T Lewi, N A Butakov, H A Evans, et al. Thermally reconfigurable meta-optics. IEEE Photonics Journal, 11, 1-16(2019).

    [77] I M Pryce, K Aydin, Y A Kelaita, et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Letters, 10, 4222-4227(2010).

    [78] T Roy, S Zhang, I W Jung, et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3, 021302(2018).

    [79] J B Reeves, R K Jayne, T J Stark, et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Letters, 18, 2802-2806(2018).

    [80] W Dong, Y Qiu, X Zhou, et al. Tunable mid‐infrared phase‐change Metasurface. Advanced Optical Materials, 6, 1701346(2018).

    [81] J Tian, Q Li, J Lu, et al. Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances. Optics Express, 26, 23918-23925(2018).

    [82] R Alaee, M Albooyeh, S Tretyakov, et al. Phase-change material-based nanoantennas with tunable radiation patterns. Optics Letters, 41, 4099-4102(2016).

    [83] M Wei, Z Song, Y Deng, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Materials Letters, 236, 350-353(2019).

    [84] [84] Yin X, Steinle T, Huang L, et al. Beam switching bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications 2017, 6 (7): e17016.

    [85] C Peng, K Ou, G Li, et al. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared. Optics Express, 29, 12893-12902(2021).

    [86] Y Sun, Y Wang, H Ye, et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband. Optics Communications, 503, 127442(2022).

    [87] S K Ghosh, V S Yadav, S Das, et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range. IEEE Transactions on Electromagnetic Compatibility, 62, 346-354(2020).

    [88] J Cheng, F Fan, S Chang. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials, 9, 398(2019).

    [89] J Park, J H Kang, S J Kim, et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Letters, 17, 407-413(2017).

    [90] M Y Shalaginov, S An, Y Zhang, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12, 1225(2021).

    [91] Y Qu, Q Li, K Du, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser & Photonics Reviews, 11, 1700091(2017).

    [92] M C Sherrott, P W C Hon, K T Fountaine, et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Letters, 17, 3027-3034(2017).

    [93] N Dabidian, S Dutta-Gupta, I Kholmanov, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Letters, 16, 3607-3615(2016).

    [94] C M Watts, X Liu, W J Padilla. Metamaterial electromagnetic wave absorbers. Advanced Materials, 24, OP98-OP120(2012).

    [95] B Zeng, Z Huang, A Singh, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light:Science & Applications, 7, 51(2018).

    [96] F Li, J Deng, J Zhou, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses. Scientific Reports, 10, 6372(2020).

    [97] S Zhang, A Soibel, S A Keo, et al. Solid-immersion metalenses for infrared focal plane arrays. Applied Physics Letters, 113, 111104(2018).

    [98] H Hou, Y Zhang, Z Luo, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors. Optics and Lasers in Engineering, 150, 106849(2022).

    [99] O Akın, H V Demir. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays. Applied Physics Letters, 110, 143106(2017).

    [100] [100] Zheludev N I, Noginov M A, Engheta N, et al. Alldielectric metasurface lenses f focal plane arrays operating in wave infrared spectrum [C]Metamaterials, Metadevices, Metasystems 2018, 2018.

    [101] C L Bogh, A J Muhowski, D A Montealegre, et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses. ACS Applied Electronic Materials, 2, 2638-2643(2020).

    [102] A Arbabi, R M Briggs, Y Horie, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Optics Express, 23, 33310-33317(2015).

    [103] K Chen, T D Dao, S Ishii, et al. Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Advanced Functional Materials, 25, 6637-6643(2015).

    [104] F Neubrech, A Pucci, T W Cornelius, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical Review Letters, 101, 157403(2008).

    [105] M Abb, Y Wang, N Papasimakis, et al. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Letters, 14, 346-352(2014).

    [106] L V Brown, K Zhao, N King, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. Journal of the American Chemical Society, 135, 3688-3695(2013).

    [107] K Chen, R Adato, H Altug. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano, 6, 7998-8006(2012).

    [108] E Cubukcu, S Zhang, Y-S Park, et al. Split ring resonator sensors for infrared detection of single molecular monolayers. Applied Physics Letters, 95, 043113(2009).

    [109] L V Brown, X Yang, K Zhao, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Letters, 15, 1272-1280(2015).

    [110] H Aouani, H Šípová, M Rahmani, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano, 7, 669-675(2013).

    [111] G Q Wallace, H C Foy, S M Rosendahl, et al. Dendritic plasmonics for mid-infrared spectroscopy. The Journal of Physical Chemistry C, 121, 9497-9507(2017).

    [112] C Wu, A B Khanikaev, R Adato, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11, 69-75(2011).

    [113] C Huck, J Vogt, M Sendner, et al. Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods. ACS Photonics, 2, 1489-1497(2015).

    [114] O Limaj, D Etezadi, N J Wittenberg, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Letters, 16, 1502-1508(2016).

    [115] D Etezadi, J B t Warner, H A Lashuel, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas. ACS Sensors, 3, 1109-1117(2018).

    [116] X Hui, C Yang, D Li, et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Advanced Science, 8, 2100583(2021).

    [117] H Hu, X Yang, F Zhai, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nature Communications, 7, 12334(2016).

    [118] T Wenger, G Viola, J Kinaret, et al. High-sensitivity plasmonic refractive index sensing using graphene. 2 D Materials, 4, 025103(2017).

    [119] Z Li, Y Zhu, Y Hao, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein. ACS Photonics, 6, 501-509(2019).

    [120] A Tittl, A Leitis, M Liu, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [121] A Leitis, A Tittl, M Liu, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science Advances, 5, eaaw2871(2019).

    [122] Y-S Chen, D Meng, W-Z Ma, et al. Fingerprint detection in the mid-infrared region based on guided-mode resonance and phonon-polariton coupling of analyte. Optics Express, 29, 37234-37244(2021).

    [123] Z Liu, D Zhu, S P Rodrigues, et al. Generative model for the inverse design of metasurfaces. Nano Letters, 18, 6570-6576(2018).

    [124] M M R Elsawy, S Lanteri, R Duvigneau, et al. Numerical optimization methods for metasurfaces. Laser & Photonics Reviews, 14, 1900445(2020).

    [125] Z Jin, S Mei, S Chen, et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm. ACS Nano, 13, 821-829(2019).

    [126] S D Campbell, D Sell, R P Jenkins, et al. Review of numerical optimization techniques for meta-device design [Invited]. Optical Materials Express, 9, 1842(2019).

    [127] K Yao, R Unni, Y Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339-366(2019).

    [128] W Ma, Z Liu, Z A Kudyshev, et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2021).

    [129] J Li, L Bao, S Jiang, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Optics Express, 27, 8375-8386(2019).

    [130] F H Koppens, D E Chang, de Abajo F J Garcia. Graphene plasmonics: A platform for strong light-matter interactions. Nano Letters, 11, 3370-3377(2011).

    [131] Y Hu, X Li, X Wang, et al. Progress of micro-nano fabrication technologies for optical metasurfaces. Infrared and Laser Engineering, 49, 20201035(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yaoyuan Lei, Qikai Chen, Yitian Liu, Yaoguang Ma. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Mid-infrared integrated optoelectronic technology

    Received: Jan. 10, 2022

    Accepted: Mar. 14, 2022

    Published Online: Apr. 8, 2022

    The Author Email:

    DOI:10.3788/IRLA20220082

    Topics