Optics and Precision Engineering, Volume. 24, Issue 1, 50(2016)
Program control in transition observation of strontium optical lattice clock
[1] [1] DIDDAMS S A, BERGQUIST J C, JEFFERTS S R, et al.. Standards of time and frequency at the putset of the 21st century [J]. Science, 2004, 306: 1318-1324.
[2] [2] MAJOR F G. The Quantum Beat Principles and Applications of Atomic Clocks [M]. USA: Springer Science + Business Media, LLCPress, 2007: 167
[3] [3] HALL J L. Defining and measuring optical frequencies [J]. Rev. Mod. Phys., 2006, 78: 1279-1295.
[4] [4] MA L S. Optical clock [J]. Physics, 2008, 37: 716-719.
[5] [5] BLOOM B J, NICHOLSON T L, WILLIAMS J R, et al.. An optical lattice clock with accuracy and stability at the 10-18 level [J]. Nature, 2014, 506, 71-75.
[6] [6] HINKLEY N, SHERMAN J A, PHILLIPS N B, et al.. An atomic clock with 10-18 instability[J]. 2013, 341(6151): 1215-1218.
[7] [7] DAS M, OHKUBO T, TAKAMOTO M, et al.. Cryogenic optical lattice clocks [J].Nature Photonics, 2015, 9(3): 185-189.
[8] [8] TAKAMOTO M, HONG F L, HIGASHI R, et al.. An optical lattice clock [J]. Nature, 2005, 435: 321-324.
[9] [9] KATORI H. Optical lattice clocks and quantum metrology [J]. Nat. Photonics., 2011, 5: 203.
[10] [10] NICHOLSON T L, CAMPBELL S L, HUTSON R B, et al.. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 2015, 7896: 1-8.
[11] [11] GUROV M, MCFERRAN J J, NAGRNY B, et al.. Optical lattice clocks as candidates for a possible redefinition of the SI second [J]. IEEE Trans. Instrum. and Measure, 2013, 62(6): 1568-1573.
[12] [12] FALKE S, LEMKE N, GREBING C, et al.. A strontium lattice clock with 3×10-17 inaccuracy and its frequency [J]. New J. Physics., 2014, 16: 073023.
[14] [14] HE L P, CHEN B, YANG L, et al.. In situ optic measuring technique based on virtual lock-in [J]. Opt. Precision Eng., 2015, 16(9): 1677-1681.(in Chinese)
[15] [15] WANG K L, LU X H, CHEN H. Application of virtual instrument in the experiments of laser cooling atoms [J]. Journal of Optoelectronics Laser, 2010, 21(2): 183-186.(in Chinese)
[16] [16] TRAVIS J, KRINF J. LabVIEW for Everyone [M]. 3rd edition. QIAO R P, Transl.. Beijing: Publishing House of Electronics Industry Press, 2011: 111-310.(in Chinese)
[17] [17] TIAN X, CHANG H, WANG X L, et al.. Trapping four isotopes of strontium in a MOT by using zeeman slowing [J]. Acta Optica Sinica, 2012, 30 (3): 898-902.(in Chinese)
[19] [19] DICKE R H. The effect of collisions upon the doppler width of spectral lines [J]. Phys. Rev. A, 1953, 89: 472.
[20] [20] TAICHENACHEV A V, YUDIN V I, OATES C W, et al.. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks[J]. Phys. Rev., Lett., 2006, 96: 083001.
[21] [21] TIAN X. Experimental Study on Loading 88Sr Into Anoptical Lattice and Probing its Clock Transition [D].Beijing: The University of Chinese Academy of Sciences, 2015: 79-90.(in Chinese)
[22] [22] Agilent Technologies Signal Generators E8663D PSG Programming Guide [M]. USA: Agilent Technologies, Inc, 2012: 1-74.
[23] [23] Agilent Technologies E8257D/ 67D, & E8663D PSG Signal Generators SCPI Command Reference [M]. USA: Agilent Technologies, Inc, 2011: 1-156.
Get Citation
Copy Citation Text
REN Jie, LIU Hui, LU Ben-quan, CHANG Hong, ZHANG Shou-gang. Program control in transition observation of strontium optical lattice clock[J]. Optics and Precision Engineering, 2016, 24(1): 50
Category:
Received: Sep. 17, 2015
Accepted: --
Published Online: Mar. 22, 2016
The Author Email: