Journal of Inorganic Materials, Volume. 39, Issue 9, 1022(2024)

Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films

Hao SHEN1, Qianqian CHEN1, Boxiang ZHOU1, Xiaodong TANG1, and Yuanyuan ZHANG1,2、*
Author Affiliations
  • 11. Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, China
  • 22. Chongqing Institute of East China Normal University, Chongqing 401120, China
  • show less
    References(35)

    [1] HAO X H, ZHAI J W, KONG L B et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Progress in Materials Science, 1(2014).

    [2] WANG X W, YANG F, YU K X et al. PbZrO3-based anti- ferroelectric thin films for high-performance energy storage: a review[J]. Advanced Materials Technologies(2023).

    [3] ZHANG M H, FULANOVIC L, ZHAO C H et al. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage[J]. Journal of Materiomics, 1(2023).

    [4] KO D L, HSIN T, LAI Y H et al. High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure[J]. Nano Energy, 106149(2021).

    [5] PALNEEDI H, PEDDIGARI M, HWANG G T et al. High- performance dielectric ceramic films for energy storage capacitors: progress and outlook[J]. Advanced Functional Materials, 1803665(2018).

    [6] GUO B, JIN F, LI L et al. Design strategies of high-performance lead-free electroceramics for energy storage applications[J]. Rare Metals, 853(2024).

    [7] CAI H H, YAN S G, ZHOU M X et al. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring[J]. Journal of the European Ceramic Society, 4761(2019).

    [8] AHN C W, AMARSANAA G, WON S S et al. Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times[J]. ACS Applied Materials & Interfaces, 26381(2015).

    [9] GAO H C, HAO X H, ZHANG Q W et al. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films[J]. Journal of Materials Science: Materials in Electronics, 10309(2016).

    [10] ZOU K L, HE C H, YU Y X et al. Ultrahigh energy efficiency and large discharge energy density in flexible dielectric nanocomposites with Pb0.97La0.02(Zr0.5SnxTi0.5-x)O3 antiferroelectric nanofillers[J]. ACS Applied Materials & Interfaces, 12847(2020).

    [11] LI Y Z, LIN J L, BAI Y et al. Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure[J]. ACS Nano, 6857(2020).

    [12] PENG B L, ZHANG Q, LI X et al. Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases[J]. ACS Applied Materials & Interfaces, 13512(2015).

    [14] BAETTIG P, SCHELLE C F, LESAR R et al. Theoretical prediction of new high-performance lead-free piezoelectrics[J]. Chemistry of Materials, 1376(2005).

    [15] YUAN Y, SUN B W, GUO M Y et al. Antiferroelectric- ferroelectric phase transition and negative electrocaloric effect in alkaline-earth element doped PbZrO3 thin films[J]. Journal of Alloys and Compounds, 163165(2022).

    [16] BHARADWAJA S S N, SAHA S, BHATTACHARYYA S et al. Dielectric properties of La-modified antiferroelectric PbZrO3 thin films[J]. Materials Science and Engineering: B, 22(2002).

    [17] BHARADWAJA S S N, LAHA A, HALDER S et al. Reversible and irreversible switching processes in pure and lanthanum modified lead zirconate thin films[J]. Materials Science and Engineering: B, 218(2002).

    [18] PARUI J, KRUPANIDHI S B. Enhancement of charge and energy storage in Sol-Gel derived pure and La-modified PbZrO3thin films[J]. Applied Physics Letters, 192901(2008).

    [19] BHARADWAJA S S N, KRUPANIDHI S B. Study of La-modified antiferroelectric PbZrO3 thin films[J]. Thin Solid Films, 88(2003).

    [20] HAO X H, ZHAI J W, YAO X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films[J]. Journal of the American Ceramic Society, 1133(2009).

    [21] HAO X H, ZHAI J W, ZHOU J et al. Structure and electrical properties of PbZrO3 antiferroelectric thin films doped with barium and strontium[J]. Journal of Alloys and Compounds, 271(2011).

    [22] HAERTLING G H, LAND C E. Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications[J]. Journal of the American Ceramic Society, 1(1971).

    [23] DAI X H, VIEHLAND D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium-content lead zirconate titanate[J]. Journal of Applied Physics, 3701(1994).

    [24] BREVAL E, WANG C, DOUGHERTY J P et al. PLZT phases near lead zirconate: 2. determination by capacitance and polarization[J]. Journal of the American Ceramic Society, 3681(2006).

    [25] PAN W Y, ZHANG Q M, BHALLA A et al. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics[J]. Journal of the American Ceramic Society, 571(1989).

    [26] HAO X H, ZHAI J W. Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase[J]. Applied Physics Letters, 022902(2014).

    [27] ZHANG T D, LI W L, HOU Y F et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films[J]. Journal of the American Ceramic Society, 3080(2017).

    [28] PAN Z B, WANG P, HOU X et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance[J]. Advanced Energy Materials(2020).

    [29] JIANG S L, ZHANG L, ZHANG G Z et al. Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties[J]. Ceramics International, 5571(2013).

    [30] LIU X H, LI Y, SUN N N et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors[J]. Inorganic Chemistry Frontiers, 756(2020).

    [31] ZHANG Q F, DAN Y, CHEN J et al. Effects of composition and temperature on energy storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics[J]. Ceramics International, 11428(2017).

    [32] ZHANG T D, ZHAO Y, LI W L et al. High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping[J]. Energy Storage Materials, 238(2019).

    [33] LOU X J, WANG J. Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue[J]. Applied Physics Letters, 102906(2010).

    [34] ZHOU L, ZIMMERMANN A, ZENG Y P et al. Fatigue of field- induced strain in antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 ceramics[J]. Journal of the American Ceramic Society, 1591(2004).

    [35] LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics[J]. Electronic Components and Materials, 55(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hao SHEN, Qianqian CHEN, Boxiang ZHOU, Xiaodong TANG, Yuanyuan ZHANG. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: Yuanyuan ZHANG (yyzhang@ee.ecnu.edu.cn)

    DOI:10.15541/jim20240087

    Topics