Journal of Inorganic Materials, Volume. 39, Issue 9, 1022(2024)
[1] HAO X H, ZHAI J W, KONG L B et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Progress in Materials Science, 1(2014).
[2] WANG X W, YANG F, YU K X et al. PbZrO3-based anti- ferroelectric thin films for high-performance energy storage: a review[J]. Advanced Materials Technologies(2023).
[3] ZHANG M H, FULANOVIC L, ZHAO C H et al. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage[J]. Journal of Materiomics, 1(2023).
[4] KO D L, HSIN T, LAI Y H et al. High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure[J]. Nano Energy, 106149(2021).
[5] PALNEEDI H, PEDDIGARI M, HWANG G T et al. High- performance dielectric ceramic films for energy storage capacitors: progress and outlook[J]. Advanced Functional Materials, 1803665(2018).
[6] GUO B, JIN F, LI L et al. Design strategies of high-performance lead-free electroceramics for energy storage applications[J]. Rare Metals, 853(2024).
[7] CAI H H, YAN S G, ZHOU M X et al. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring[J]. Journal of the European Ceramic Society, 4761(2019).
[8] AHN C W, AMARSANAA G, WON S S et al. Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times[J]. ACS Applied Materials & Interfaces, 26381(2015).
[9] GAO H C, HAO X H, ZHANG Q W et al. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films[J]. Journal of Materials Science: Materials in Electronics, 10309(2016).
[10] ZOU K L, HE C H, YU Y X et al. Ultrahigh energy efficiency and large discharge energy density in flexible dielectric nanocomposites with Pb0.97La0.02(Zr0.5Sn
[11] LI Y Z, LIN J L, BAI Y et al. Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films
[12] PENG B L, ZHANG Q, LI X et al. Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases[J]. ACS Applied Materials & Interfaces, 13512(2015).
[14] BAETTIG P, SCHELLE C F, LESAR R et al. Theoretical prediction of new high-performance lead-free piezoelectrics[J]. Chemistry of Materials, 1376(2005).
[15] YUAN Y, SUN B W, GUO M Y et al. Antiferroelectric- ferroelectric phase transition and negative electrocaloric effect in alkaline-earth element doped PbZrO3 thin films[J]. Journal of Alloys and Compounds, 163165(2022).
[16] BHARADWAJA S S N, SAHA S, BHATTACHARYYA S et al. Dielectric properties of La-modified antiferroelectric PbZrO3 thin films[J]. Materials Science and Engineering: B, 22(2002).
[17] BHARADWAJA S S N, LAHA A, HALDER S et al. Reversible and irreversible switching processes in pure and lanthanum modified lead zirconate thin films[J]. Materials Science and Engineering: B, 218(2002).
[18] PARUI J, KRUPANIDHI S B. Enhancement of charge and energy storage in Sol-Gel derived pure and La-modified PbZrO3thin films[J]. Applied Physics Letters, 192901(2008).
[19] BHARADWAJA S S N, KRUPANIDHI S B. Study of La-modified antiferroelectric PbZrO3 thin films[J]. Thin Solid Films, 88(2003).
[20] HAO X H, ZHAI J W, YAO X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films[J]. Journal of the American Ceramic Society, 1133(2009).
[21] HAO X H, ZHAI J W, ZHOU J et al. Structure and electrical properties of PbZrO3 antiferroelectric thin films doped with barium and strontium[J]. Journal of Alloys and Compounds, 271(2011).
[22] HAERTLING G H, LAND C E. Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications[J]. Journal of the American Ceramic Society, 1(1971).
[23] DAI X H, VIEHLAND D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium-content lead zirconate titanate[J]. Journal of Applied Physics, 3701(1994).
[24] BREVAL E, WANG C, DOUGHERTY J P et al. PLZT phases near lead zirconate: 2. determination by capacitance and polarization[J]. Journal of the American Ceramic Society, 3681(2006).
[25] PAN W Y, ZHANG Q M, BHALLA A et al. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics[J]. Journal of the American Ceramic Society, 571(1989).
[26] HAO X H, ZHAI J W. Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase[J]. Applied Physics Letters, 022902(2014).
[27] ZHANG T D, LI W L, HOU Y F et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films[J]. Journal of the American Ceramic Society, 3080(2017).
[28] PAN Z B, WANG P, HOU X et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance[J]. Advanced Energy Materials(2020).
[29] JIANG S L, ZHANG L, ZHANG G Z et al. Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties[J]. Ceramics International, 5571(2013).
[30] LIU X H, LI Y, SUN N N et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors[J]. Inorganic Chemistry Frontiers, 756(2020).
[31] ZHANG Q F, DAN Y, CHEN J et al. Effects of composition and temperature on energy storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics[J]. Ceramics International, 11428(2017).
[32] ZHANG T D, ZHAO Y, LI W L et al. High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping[J]. Energy Storage Materials, 238(2019).
[33] LOU X J, WANG J. Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue[J]. Applied Physics Letters, 102906(2010).
[34] ZHOU L, ZIMMERMANN A, ZENG Y P et al. Fatigue of field- induced strain in antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 ceramics[J]. Journal of the American Ceramic Society, 1591(2004).
[35] LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics[J]. Electronic Components and Materials, 55(2020).
Get Citation
Copy Citation Text
Hao SHEN, Qianqian CHEN, Boxiang ZHOU, Xiaodong TANG, Yuanyuan ZHANG.
Category:
Received: Feb. 28, 2024
Accepted: --
Published Online: Dec. 13, 2024
The Author Email: Yuanyuan ZHANG (yyzhang@ee.ecnu.edu.cn)