Chinese Journal of Quantum Electronics, Volume. 42, Issue 1, 1(2025)
Terahertz quantum communication
[1] Liang P L, Dai J M. Review of terahertz science and technology[J]. Techniques of Automation and Applications, 34, 1-8(2015).
[2] Zhang C L, Mu K J. Terahertz spectroscopy and imaging[J]. Laser & Optoelectronics Progress, 47, 023001(2010).
[3] Yan Z Y, Zhu L G, Meng K et al. THz medical imaging: From in vitro to in vivo[J]. Trends in Biotechnology, 40, 816-830(2022).
[4] Bai Y B, Zhang M Y, Zhu M Q et al. Terahertz kinetic study of α-lactose monohydrate[J]. Chinese Journal of Quantum Electronics, 40, 349-359(2023).
[5] Xiao W, Zhang M H, Zhang C L et al. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 40, 164-180(2023).
[6] Xie S, Li H R, Li L X et al. Survey of terahertz communication technology[J]. Journal on Communications, 41, 168-186(2020).
[7] Feng W, Wei S T, Cao J C. 6G technology development vision and terahertz communication[J]. Acta Physica Sinica, 70, 244303(2021).
[8] Yu X, Jia S, Hu H et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band[J]. APL Photonics, 1, 081301(2016).
[9] Wang J, Al-Khalidi A, Ahearne S et al. 22 Gbps/80 cm low-cost THz wireless system[C](2022).
[10] Hirata A, Kosugi T, Takahashi H et al. 120-GHz-band wireless link technologies for outdoor 10-gbit/s data transmission[J]. IEEE Transactions on Microwave Theory and Techniques, 60, 881-895(2012).
[11] Li X Y, Yu J J, Zhao L et al. 1-Tb/s millimeter-wave signal wireless delivery at D-band[J]. Journal of Lightwave Technology, 37, 196-204(2019).
[12] Song H J, Lee N. Terahertz communications: Challenges in the next decade[J]. IEEE Transactions on Terahertz Science and Technology, 12, 105-117(2022).
[13] Pang X D, Ozolins O, Zhang L et al. Free-space communications enabled by quantum cascade lasers[J]. Physica Status Solidi (a), 218, 2000407(2021).
[14] Deng Q Z, Zhang H Q, Zhang L et al. Terahertz photonic communication technologies[J]. Journal of Terahertz Science and Electronic Information Technology, 20, 790-803(2022).
[15] You X H, Wang C X, Huang J et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 64, 110301(2021).
[16] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 175-179(1984).
[17] Bennett C H, Brassard G. Experimental quantum cryptography: The dawn of a new era for quantum cryptography: The experimental prototype is working[J]. ACM SIGACT News, 20, 78-80(1989).
[18] Muller A, Breguet J, Gisin N. Experimental demonstration of quantum cryptography using polarized photons in optical fibre over more than 1 km[J]. Europhysics Letters, 23, 383-388(1993).
[19] Townsend P D, Ougazzaden A, Tapster P R. Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel[J]. Electronics Letters, 29, 1291-1293(1993).
[20] Yuan Z L, Gobby C, Shields A J. Quantum key distribution over distances as long as 101 km[C](2003).
[21] Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light[J]. Physical Review A, 72, 012322(2005).
[22] Acín A, Brunner N, Gisin N et al. Device-independent security of quantum cryptography against collective attacks[J]. Physical Review Letters, 98, 230501(2007).
[23] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).
[24] Liu Y, Chen T Y, Wang L J et al. Experimental measurement-device-independent quantum key distribution[J]. Physical Review Letters, 111, 130502(2013).
[25] Liao S K, Cai W Q, Liu W Y et al. Satellite-to-ground quantum key distribution[J]. Nature, 549, 43-47(2017).
[26] Lu C Y, Peng C Z, Pan J W. Quantum communication at 7, 600 km and beyond[J]. Communications of the ACM, 61, 42-43(2018).
[27] Wang S, Yin Z Q, He D Y et al. Twin-field quantum key distribution over 830-km fibre[J]. Nature Photonics, 16, 154-161(2022).
[28] Liu Y, Zhang W J, Jiang C et al. Experimental twin-field quantum key distribution over 1000 km fiber distance[J]. Physical Review Letters, 130, 210801(2023).
[29] Zhu H T, Huang Y Z, Liu H et al. Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking[J]. Physical Review Letters, 130, 030801(2023).
[30] Zhou L, Lin J P, Xie Y M et al. Experimental quantum communication overcomes the rate-loss limit without global phase tracking[J]. Physical Review Letters, 130, 250801(2023).
[31] Ralph T C. Continuous variable quantum cryptography[J]. Physical Review A, 61, 010303(1999).
[32] Ralph T C. Security of continuous-variable quantum cryptography[J]. Physical Review A, 62, 062306(2000).
[33] Reid M D. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations[J]. Physical Review A, 62, 062308(2000).
[34] Cerf N J, Lévy M, Van Assche G. Quantum distribution of Gaussian keys using squeezed states[J]. Physical Review A, 63, 052311(2000).
[35] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 88, 057902(2002).
[37] Grosshans F, Van Assche G, Wenger J et al. Quantum key distribution using Gaussian-modulated coherent states[J]. Nature, 421, 238-241(2003).
[38] Weedbrook C, Lance A M, Bowen W P et al. Quantum cryptography without switching[J]. Physical Review Letters, 93, 170504(2004).
[39] Lodewyck J, Debuisschert T, Tualle-Brouri R et al. Controlling excess noise in fiber-optics continuous-variable quantum key distribution[J]. Physical Review A, 72, 050303(2005).
[40] Lodewyck J, Bloch M, Garcia-Patron R et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. Physical Review A, 76, 042305(2007).
[41] Dai W C, Lu Y, Zhu J et al. An integrated quantum secure communication system[J]. Science China Information Sciences, 54, 2578-2591(2011).
[42] Jouguet P, Kunz-Jacques S, Leverrier A et al. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photon, 7, 378-381(2013).
[43] Huang D, Huang P, Lin D K et al. Long-distance continuous-variable quantum key distribution by controlling excess noise[J]. Scientific Reports, 6, 19201(2016).
[44] Zhang Y C, Li Z Y, Chen Z Y et al. Continuous-variable QKD over 50 km commercial fiber[J]. Quantum Science and Technology, 4, 035006(2019).
[45] Zhang Y C, Chen Z Y, Pirandola S et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber[J]. Physical Review Letters, 125, 010502(2020).
[46] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Physical Review A, 65, 032302(2002).
[47] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement[J]. Reviews of Modern Physics, 81, 865-942(2009).
[48] Bovino F A, Degiovanni I P. Quantum correlation bounds for optimization of quantum-information experiments: The Wigner inequality case[J]. Physical Review A, 77, 052110(2008).
[49] Deng F G, Long G L. Secure direct communication with a quantum one-time pad[J]. Physical Review A, 69, 052319(2004).
[50] Wang C, Deng F G, Li Y S et al. Quantum secure direct communication with high-dimension quantum superdense coding[J]. Physical Review A, 71, 044305(2005).
[51] Deng F G, Li X H, Li C Y et al. Quantum secure direct communication network with Einstein Podolsky Rosen pairs[J]. Physics Letters A, 359, 359-365(2006).
[52] Pirandola S, Braunstein S L, Mancini S et al. Quantum direct communication with continuous variables[J]. EPL, 84, 20013(2008).
[53] Zhu F, Zhang W, Sheng Y B et al. Experimental long-distance quantum secure direct communication[J]. Science Bulletin, 62, 1519-1524(2017).
[54] Sun Z, Song L Y, Huang Q et al. Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design[J]. IEEE Transactions on Communications, 68, 5778-5792(2020).
[55] Zhou L, Sheng Y B, Long G L. Device-independent quantum secure direct communication against collective attacks[J]. Science Bulletin, 65, 12-20(2020).
[56] Qi R Y, Sun Z, Lin Z S et al. Implementation and security analysis of practical quantum secure direct communication[J]. Light: Science & Applications, 8, 22(2019).
[57] Zhang H R, Sun Z, Qi R Y et al. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states[J]. Light: Science & Applications, 11, 83(2022).
[58] Ma J J, Vorrius F, Lamb L et al. Comparison of experimental and theoretical determined terahertz attenuation in controlled rain[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 1195-1202(2015).
[59] Ma J J, Vorrius F, Lamb L et al. Experimental comparison of terahertz and infrared signaling in laboratory-controlled rain[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 856-865(2015).
[60] Ma J J, Moeller L, Federici J F. Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 130-143(2015).
[61] Su K, Moeller L, Barat R B et al. Experimental comparison of terahertz and infrared data signal attenuation in dust clouds[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 29, 2360-2366(2012).
[62] Su K, Moeller L, Barat R B et al. Experimental comparison of performance degradation from terahertz and infrared wireless links in fog[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 29, 179-184(2012).
[63] Weedbrook C, Pirandola S, Lloyd S et al. Quantum cryptography approaching the classical limit[J]. Physical Review Letters, 105, 110501(2010).
[64] Weedbrook C, Pirandola S, Ralph T C. Continuous-variable quantum key distribution using thermal states[J]. Physical Review A, 86, 022318(2012).
[65] Ottaviani C, Woolley M J, Erementchouk M et al. Terahertz quantum cryptography[J]. IEEE Journal on Selected Areas in Communications, 38, 483-495(2020).
[66] Navascués M, Grosshans F, Acín A. Optimality of Gaussian attacks in continuous-variable quantum cryptography[J]. Physical Review Letters, 97, 190502(2006).
[67] García-Patrón R, Cerf N J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution[J]. Physical Review Letters, 97, 190503(2006).
[68] Renner R, Cirac J I. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography[J]. Physical Review Letters, 102, 110504(2009).
[69] Weedbrook C, Ottaviani C, Pirandola S. Two-way quantum cryptography at different wavelengths[J]. Physical Review A, 89, 012309(2014).
[70] Liu X, Zhu C H, Chen N et al. Practical aspects of terahertz wireless quantum key distribution in indoor environments[J]. Quantum Information Processing, 17, 304(2018).
[71] He Y Q, Mao Y Y, Huang D et al. Indoor channel modeling for continuous variable quantum key distribution in the terahertz band[J]. Optics Express, 28, 32386-32402(2020).
[72] Kundu N K, Dash S P, McKay M R et al. MIMO terahertz quantum key distribution[J]. IEEE Communications Letters, 25, 3345-3349(2021).
[73] Wang Z Q, Malaney R, Green J. Inter-satellite quantum key distribution at terahertz frequencies[C](2019).
[74] Liu C J, Zhu C H, Liu X et al. Multicarrier multiplexing continuous-variable quantum key distribution at terahertz bands under indoor environment and in inter-satellite links communication[J]. IEEE Photonics Journal, 13, 7600113(2021).
[75] Liu C J, Zhu C H, Nie M et al. Composable security for inter-satellite continuous-variable quantum key distribution in the terahertz band[J]. Optics Express, 30, 14798-14816(2022).
[76] Liu C J, Zhu C H, Nie M et al. FL-QKD based on optical-THz biphotons generated by spontaneous parametric downconversion in inter-satellite wireless communication[J]. Applied Optics, 60, 7362-7370(2021).
[77] Liu C J, Zhu C H, Li Z H et al. Continuous-variable quantum secret sharing based on thermal terahertz sources in inter-satellite wireless links[J]. Entropy, 23, 1223(2021).
[78] Shi L L, Wu J B, Tu X C et al. Terahertz single photon detectors[J]. Scientia Sinica Physica, 51, 054203(2021).
[79] Guedes V F, Mendonca F A, Silva J B R et al. A proposal for single-photon detection in millimeter-wave and THz regions[C]. Brazil(2021).
Get Citation
Copy Citation Text
Hailin GUO, Dongyun SUN, Haoxin LIU, Cuiling ZHANG, Zhe YANG, Cunlin ZHANG. Terahertz quantum communication[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 1
Category:
Received: Jun. 28, 2023
Accepted: --
Published Online: Mar. 13, 2025
The Author Email: GUO Hailin (2220602060@cnu.edu.cn)