Journal of Applied Optics, Volume. 40, Issue 6, 1067(2019)

Embedded GPU-based parallel optimization for moving objects segmentation algorithm

ZHANG Gang1...2, MA Zhenhuan1,2, LEI Tao2, CUI Yi2 and ZHANG Sanxi3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(18)

    [1] [1] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[J].Computer Society Conference on Computer Vision and Pattern Recognition,1999,2: 2246.

    [2] [2] HOFMANN M, TIEFENBACHER P, RIGOLL G. Background segmentation with feedback: the pixel-based adaptive segmenter[C].USA: IEEE, 2012.

    [3] [3] BARNICH O, VAN DROOGENBROECK M. ViBe: A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.

    [4] [4] NVIDIA.CUDA C Programming Guide,PG-02829-001_v8.0, 2017.5 [EB/OL].[2017-10-15]. https: //docs.nvidia.com/cuda/cuda-c-programming-guide.

    [5] [5] NVIDIA.CUDA C Best Practices Guide,DG-05603-001_v8.0, 2017.5 [EB/OL].[2017-10-15]. https: //docs.nvidia.com/cuda/cuda-c-best-practices-guide.

    [6] [6] NVIDIA. CUDA Quick Start Guide, DU-05347-301_v8.0, 2017.5 [EB/OL]. [2018-09-10].https: //docs.nvidia.com/cuda/cuda-quick-start-guide.

    [7] [7] NVIDIA.NVIDIA Jetson TX2 System-on-Modul, v1.1, 20e[EB/OL]. [2017-12-12].https: //developer.nvidia.com/embedded/jetson-tx2.

    [8] [8] NVIDIA.Jetson TX1 and TX2 Developer Kits,DA_07976_001_01, 2017.7[EB/OL]. [2017-12-10].https: //developer.nvidia.com/embedded/dlc/l4t-28-1-jetson-developer-kit-user-guide.

    [9] [9] NVIDIA. Pascal Architecture Whitepaper,V1.2, 2017[EB/OL]. [2017-12-13].https: //images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

    [11] [11] TANG Tao, PENG Lin, HUANG Chun, et al. Performance analysis of GPU programs towards better memory hierarchy design[J]. Computer Science, 2017, 44(12): 1-10.

    [12] [12] YAN Fabao, SU Yanrui, ZHAO Zhanfeng, et al. Optimization on FFT of small size in real-time image restoration based on GPU[J]. Journal of Central South University: Science and Technology, 2017, 48(10): 2691-2696.

    [13] [13] PARK S I, PONCE S P, HUANG J, et al. Low-cost, high-speed computer vision using NVIDIAs CUDA architecture[C].USA: IEEE, 2008.

    [14] [14] BERNABE S, LOPEZ S, PLAZA A, et al. GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 221-225.

    [15] [15] YAO G L, LEI T, ZHONG J D, et al. Comparative evaluation of background subtraction algorithms in remote scene videos captured by MWIR sensors[J]. Sensors, 2017, 17(9): 1945.

    [16] [16] MARTIN P J, AYUSO L F, TORRES R, et al. Algorithmic strategies for optimizing the parallel reduction primitive in CUDA[C].USA: IEEE, 2012.

    [17] [17] ELLIOTT G A, ANDERSON J H. Real-world constraints of GPUs in real-time systems[C]. USA: IEEE, 2011.

    [18] [18] NVIDIA.Curand Library Programming Guide, PG-05328-050 _v8.0, 2016.2[EB/OL].[2018-12-15]. https: //developer.nvidia.com/curand.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Gang, MA Zhenhuan, LEI Tao, CUI Yi, ZHANG Sanxi. Embedded GPU-based parallel optimization for moving objects segmentation algorithm[J]. Journal of Applied Optics, 2019, 40(6): 1067

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 10, 2019

    Accepted: --

    Published Online: Feb. 11, 2020

    The Author Email:

    DOI:10.5768/jao201940.0602004

    Topics