Semiconductor Optoelectronics, Volume. 44, Issue 3, 330(2023)

Simulation of Visible-Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors

LU Zhinan* and SUN Jiuxun
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] Zhang L, Yang T, Shen L, et al. Toward highly sensitive polymer photodetectors by molecular engineering[J]. Adv. Mater., 2015, 27: 6496-6503.

    [2] [2] Ren H, Chen J, Li Y, et al. Recent progress in organic photodetectors and their applications[J]. Adv. Sci., 2021, 8, 2002418.

    [3] [3] Dong H, Zhu H, Meng Q, et al. Organic photoresponse materials and devices[J]. Chem. Soc. Rev., 2012, 41: 1754-1808.

    [4] [4] Wu Y L, Fukuda K, Yokota T, et al. A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication[J]. Adv. Mater., 2019, 31: 1903687.

    [5] [5] Wang Y, Benduhn J, Baisinger L, et al. Optical distance measurement based on induced nonlinear photoresponse of high-performance organic near-infrared photodetectors[J]. ACS Appl. Mater. Interfaces, 2021, 13: 23239-23246.

    [6] [6] Lin Q, Armin A, Nagiri R, et al. Electro-optics of perovskite solar cells[J]. Nature Photon, 2015, 9: 106-112.

    [7] [7] Salem M S, Shaker A, Al-Bagawia A H, et al. Narrowband near-infrared perovskite/organic photodetector: TCAD numerical simulation[J]. Crystals, 2022, 12(8): 1033.

    [8] [8] Seo H, Aihara S, Watabe T, et al. Color sensors with three vertically stacked organic photodetectors[J]. Jpn. J. Appl. Phys., 2007, 46(49): L1240-L1242.

    [9] [9] Gong X, Tong M, Xia Y, et al. High-detectivity polymer pthotodetectors with spectral response from 300 to 1 450 nm[J]. Science, 2009, 325(5948): 1665-1667.

    [10] [10] Xu W L, Wu B, Zheng T, et al. Forster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction[J]. J. Phys. Chem. C., 2015, 119: 21913-21920.

    [11] [11] Wu S, Xiao B, Zhao B, et al. High sensitivity polymer visible-near infrared photodetectors via an inverted device structure and manipulation of injection barrier height[J]. Small, 2016, 12: 3374-3380.

    [12] [12] Scracco E, Bouthinon B, Verilhac J M, et al. Work function tuning for high performance solution processed organic photodetectors with inverted structure[J]. Adv. Mater., 2013, 25: 6534-6538.

    [13] [13] Xiao L, Chen S, Chen X, et al. High detectivity panchromatic photodetectors to the near infrared region based on a dimeric porphyrin small molecule[J]. J. Mater. Chem. C, 2018, 6: 3341-3345.

    [14] [14] Liu X, Lin Y, Liao Y, et al. Recent advances in organic near-infrared photodiodes[J]. J. Mater. Chem. C, 2018, 6: 3499-3513.

    [15] [15] Lin Y, He Q, Zhao F, et al. A facile planar fused ring electron acceptor for As-cast polymer solar cells with 8.71% efficiency[J]. J. Am. Chem. Soc., 2016, 138: 2973-2976.

    [16] [16] Yan C, Barlow S, Wang Z, et al. Non-fullerene acceptors for organic solar cells[J]. Nat. Rev. Mater., 2018, 3: 18003.

    [17] [17] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics: An emerging horizon[J]. Mater. Horiz., 2014, 1: 470-488.

    [18] [18] Lin Y, Zhao F, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics[J]. J. Am. Chem. Soc., 2016, 138: 4955-4961.

    [19] [19] Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Adv. Mater., 2015, 27: 1170-1174.

    [20] [20] Jia B, Wang J, Wu Y, et al. Enhancing the performance of a fused-ring electron acceptor by unidirectional extension[J]. J. Am. Chem. Soc., 2019, 141: 19023-19031.

    [21] [21] Xie Y, Huang W, Liang Q, et al. High-performance fullerene-free polymer solar cells featuring efficient photocurrent generation from dual pathways and low nonradiative recombination loss[J]. ACS Energy Lett., 2019, 4: 8-16.

    [22] [22] Liu G H, Li T F, Zhan X W, et al. High-sensitivity visible-near infrared organic photodetectors based on non-fullerene acceptors[J]. ACS Appl. Materials & Interfaces, 2020, 12(15): 17769-17775.

    [23] [23] Euvrard J, Revaux A, Cantarano A, et al. Impact of unintentional oxygen doping on organic photodetectors[J]. Org. Electron., 2018, 54: 64-71.

    [24] [24] Abdelaziz W, Zekry A, Shaker A, et al. Numerical study of organic graded bulk heterojunction solar cell using SCAPS simulation[J]. Sol. Energy, 2020, 211: 375-382.

    [25] [25] Baeg K-J, Binda M, Natali D, et al. Organic light detectors: Photodiodes and phototransistors[J]. Adv. Mater., 2013, 25: 4267-4295.

    Tools

    Get Citation

    Copy Citation Text

    LU Zhinan, SUN Jiuxun. Simulation of Visible-Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors[J]. Semiconductor Optoelectronics, 2023, 44(3): 330

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 20, 2022

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email: Zhinan LU (luzhinan1996@163.com)

    DOI:10.16818/j.issn1001-5868.2022122001

    Topics