Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1841(2024)
Key Materials Used in Alkaline Water Electrolyzers-A Short Review
[1] [1] Du Z M, Zheng J Y, Dai J F, et al. Thoughts and suggestions on the construction of my country's green hydrogen supply system[J]. Chinese Engineering Science, 2022, 24(06):64-71.
[2] [2] Xu C B, Liu J G. Application value, challenges and prospects of hydrogen energy storage in my country's new power system[J]. Chinese Engineering Science, 2022, 24(03):89-99.
[3] [3] Yu H M, Yi B L. Electrolysis hydrogen production and hydrogen energy storage[J]. Chinese Engineering Science, 2018, 20(03):58-65.
[4] [4] Chen B, Xie H P, Liu T, et al. Research progress on advanced hydrogen production principles and technologies in the context of carbon neutrality[J]. Engineering Science and Technology, 2022, 54(1): 106-116.
[5] [5] DAVID M, OCAMPO-MARTíNEZ C, SáNCHEZ-PE?A R. Advances in alkaline water electrolyzers: A review[J]. J Energy Storage, 2019, 23: 392-403.
[6] [6] SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Mater Sci Energy Technol, 2019, 2(3): 442-454.
[7] [7] KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44: 121-126.
[8] [8] XIE W F, SHAO M F. Alkaline water electrolysis for efficient hydrogen production[J]. Journal of Electrochemistry, 2022, 28(10):22014008.
[9] [9] XU H G, ZHANG X Y, DING Y L, et al. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Struct, 2023, 4(8): 2200404.
[10] [10] YU Z Y, DUAN Y, FENG X Y, et al. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv Mater, 2021, 33(31): e2007100.
[11] [11] ZHOU B H, GAO R J, ZOU J J, et al. Surface design strategy of catalysts for water electrolysis[J]. Small, 2022, 18(27): 2202336.
[12] [12] WAN L, XU Z A, XU Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy Environ Sci, 2023, 16(4): 1384-1430.
[13] [13] ROGER I, SHIPMAN M A, SYMES M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nat Rev Chem, 2017, 1: 3.
[14] [14] HOU J G, WU Y Z, ZHANG B, et al. Nanoarray architectures: Rational design of nanoarray architectures for electrocatalytic water splitting[J]. Adv Funct Mater, 2019, 29(20): 1970132.
[15] [15] WANG N, SONG S, WU W, et al. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers[J]. Advanced Energy Materials, 2024, 14(16): 2303451.
[16] [16] DONG Z H, JIANG Z, TANG T, et al. Rational design of integrated electrodes for advancing high-rate alkaline electrolytic hydrogen production[J]. J Mater Chem A, 2022, 10(24): 12764-12787.
[17] [17] XU Q C, ZHANG J H, ZHANG H X, et al. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting[J]. Energy Environ Sci, 2021, 14(10): 5228-5259.
[18] [18] WANG L, ZHU Y H, ZENG Z H, et al. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water[J]. Nano Energy, 2017, 31: 456-461.
[19] [19] LAO M M, LI P, JIANG Y Z, et al. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction[J]. Nano Energy, 2022, 98: 107231.
[20] [20] ANWAR S, KHAN F, ZHANG Y H, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. Int J Hydrog Energy, 2021, 46: 32284-32317.
[21] [21] Meng F, Zhang H L, Ji S S, et al. Development status and technology optimization strategies of high-efficiency electrolysis of water for hydrogen production [J]. Journal of Natural Sciences of Heilongjiang University, 2021, 38(6):702-713.
[22] [22] GUO Y N, PARK T, YI J W, et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting[J]. Adv Mater, 2019, 31(17): e1807134.
[23] [23] LUO Y T, ZHANG Z Y, CHHOWALLA M, et al. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Adv Mater, 2022, 34(16): e2108133.
[24] [24] MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem Soc Rev, 2014, 43(18): 6555-6569.
[25] [25] HU C, SONG E H, WANG M Y, et al. Partial-single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution[J]. Adv Sci, 2020, 8(2): 2001881.
[26] [26] XU S, WU Q, LU B A, et al. Recent advances and future prospects on industrial catalysts for green hydrogen production in alkaline media[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 2209001.
[27] [27] WANG X P, XI S B, HUANG P R, et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution[J]. Nature, 2022, 611(7937): 702-708.
[28] [28] ZHANG Y Y, FU Q, SONG B, et al. Regulation strategy of transition metal oxide-based electrocatalysts for enhanced oxygen evolution reaction[J]. Acc Mater Res, 2022, 3(10): 1088-1100.
[29] [29] ZHAO Z, SUN J P, LI X, et al. Joule heating synthesis of NiFe alloy/MoO2 and in situ transformed (Ni, Fe)OOH/MoO2 heterostructure as effective complementary electrocatalysts for overall splitting in alkaline seawater[J]. Appl Catal B Environ, 2024, 340: 123277.
[30] [30] EUM D, KIM B, SONG J H, et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides[J]. Nat Mater, 2022, 21(6): 664-672.
[31] [31] GRIMAUD A, DIAZ-MORALES O, HAN B H, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat Chem, 2017, 9(5): 457-465.
[32] [32] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Adv Mater, 2020, 32(3): e1806326.
[33] [33] LIANG C W, ZOU P C, NAIRAN A, et al. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ Sci, 2020, 13(1): 86-95.
[34] [34] XIE X H, DU L, YAN L T, et al. Oxygen evolution reaction in alkaline environment: Material challenges and solutions[J]. Adv Funct Materials, 2022, 32(21): 2110036.
[35] [35] ZHANG J Y, DANG J, ZHU X H, et al. Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis[J]. Appl Catal B Environ, 2023, 325: 122296.
[36] [36] LI J J, JING Z Y, BAI H T, et al. Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts[J]. Environ Chem Lett, 2023, 21(5): 2583-2617.
[37] [37] BOPPELLA R, TAN J, YUN J, et al. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives[J]. Coord Chem Rev, 2021, 427: 213552.
[38] [38] CHEN M P, LIU D, FENG J X, et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis[J]. Chem Eng J, 2022, 443(6321): 136432.
[39] [39] HE R Z, HUANG X Y, FENG L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy Fuels, 2022, 36(13): 6675-6694.
[40] [40] SUN J, XUE H, GUO N K, et al. Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding oxygen evolution performance[J]. Angew Chem Int Ed Engl, 2021, 60(35): 19435-19441.
[41] [41] JIANG J, SUN F F, ZHOU S, et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium Co-doped nickel (oxy)hydroxide[J]. Nat Commun, 2018, 9(1): 2885.
[42] [42] SHAO W J, XIAO M J, YANG C D, et al. Assembling and regulating of transition metal-based heterophase vanadates as efficient oxygen evolution catalysts[J]. Small, 2022, 18(7): e2105763.
[43] [43] NGUYEN T X, LIAO Y C, LIN C C, et al. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Adv Funct Materials, 2021, 31(27): 2101632.
[44] [44] WANG Q Q, JIA Z, LI J Q, et al. Attractive electron delocalization behavior of FeCoMoPB amorphous nanoplates for highly efficient alkaline water oxidation[J]. Small, 2022, 18(46): e2204135.
[45] [45] GUO B R, DING Y N, HUO H H, et al. Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis[J]. Nanomicro Lett, 2023, 15(1): 57.
[46] [46] KARMAKAR A, SRIVASTAVA S K. Hierarchically hollow interconnected rings of nickel substituted cobalt carbonate hydroxide hydrate as promising oxygen evolution electrocatalyst[J]. Int J Hydrog Energy, 2022, 47(53): 22430-22441.
[47] [47] MA J G, YANG M Y, ZHAO G L, et al. Ni electrodes with 3D-ordered surface structures for boosting bubble releasing toward high current density alkaline water splitting[J]. Ultrason Sonochem, 2023, 96: 106398.
[48] [48] XU Y C, WEI S T, GAN L F, et al. Amorphous carbon interconnected ultrafine CoMnP with enhanced Co electron delocalization yields Pt-like activity for alkaline water electrolysis[J]. Adv Funct Materials, 2022, 32(21): 2112623.
[49] [49] LIN L W, PIAO S Q, CHOI Y, et al. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges[J]. EnergyChem, 2022, 4(2): 100072.
[50] [50] WU L B, ZHANG F H, SONG S W, et al. Efficient alkaline water/ seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics[J]. Adv Mater, 2022, 34(21): e2201774.
[51] [51] WU X Y, HAN X P, MA X Y, et al. Morphology-controllable synthesis of Zn-co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis[J]. ACS Appl Mater Interfaces, 2017, 9(14): 12574-12583.
[52] [52] HE W J, HAN L L, HAO Q Y, et al. Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution[J]. ACS Energy Lett, 2019, 4(12): 2905-2912.
[53] [53] JIN J, YIN J, LIU H B, et al. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media[J]. Angew Chem Int Ed Engl, 2021, 60(25): 14117-14123.
[54] [54] PANG L Q, MA Q, ZHU C D. Multifunctional amorphous co phosphosulfide-coated Fe-co carbonate hydroxide for highly efficient overall water splitting[J]. J Electron Mater, 2023, 52(3): 1808-1818.
[55] [55] LIU H B, LI J C, ZHANG Y Q, et al. Boosted water electrolysis capability of NixCoyP via charge redistribution and surface activation[J]. Chem Eng J, 2023, 473: 145397.
[56] [56] ZHU Y P, CHEN H C, HSU C S, et al. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte[J]. ACS Energy Lett, 2019, 4(4): 987-994.
[57] [57] LI J W, HU Y Z, HUANG X, et al. Bimetallic phosphide heterostructure coupled with ultrathin carbon layer boosting overall alkaline water and seawater splitting[J]. Small, 2023, 19(20): e2206533.
[58] [58] ZHANG H M, ZUO L H, GAO Y H, et al. Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting[J]. J Mater Sci Technol, 2024, 173: 1-10.
[59] [59] ZHAI P L, WANG C, ZHAO Y Y, et al. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density[J]. Nat Commun, 2023, 14(1): 1873.
[60] [60] BAI Y K, WU Y, ZHOU X C, et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution[J]. Nat Commun, 2022, 13(1): 6094.
[61] [61] ZENG S P, SHI H, DAI T Y, et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution[J]. Nat Commun, 2023, 14(1): 1811.
[62] [62] HU C L, ZHANG L, ZHAO Z J, et al. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting[J]. Adv Mater, 2018, 30(12): e1705538.
[63] [63] YANG L J, ZENG L L, LIU H, et al. Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction[J]. Appl Catal B Environ, 2019, 249: 98-105.
[64] [64] ZHANG J, WANG T, LIU P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nat Commun, 2017, 8: 15437.
[65] [65] DASTAFKAN K, SHEN X J, HOCKING R K, et al. Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes[J]. Nat Commun, 2023, 14(1): 547.
[66] [66] LI Y B, TAN X, HOCKING R K, et al. Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution[J]. Nat Commun, 2020, 11(1): 2720.
[67] [67] ZHAI P L, ZHANG Y X, WU Y Z, et al. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting[J]. Nat Commun, 2020, 11(1): 5462.
[68] [68] ZHU C L, YIN Z X, LAI W H, et al. Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries[J]. Adv Energy Mater, 2018, 8(36): 1802327.
[69] [69] LI H Y, CHEN S M, ZHANG Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting[J]. Nat Commun, 2018, 9(1): 2452.
[70] [70] ZANG Z H, GUO Q J, LI X, et al. Construction of a S and Fe co-regulated metal Ni electrocatalyst for efficient alkaline overall water splitting[J]. J Mater Chem A, 2023, 11(9): 4661-4671.
[71] [71] HU F, YU D S, YE M, et al. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges[J]. Adv Energy Mater, 2022, 12(19): 2200067.
[72] [72] Baoshilai New Material Technology (Suzhou) Co., Ltd. Baoshilai has officially entered the era of non-precious metal 10,000 A electrical encryption. [EB/OL]. http://www.cnbaoshilai.com/newsshow_7.html.
[73] [73] Shanghai Juna New Material Technology Co., Ltd. JA series next generation alkali electrode [EB/OL]. http://www.jnh2.cn/chanpin.html.
[74] [74] De Nore China. Alkaline Water Electrolysis. [EB/OL]. https://china.denora.com/zh_CN/products/applications/energy-storage/alkaline-water-electrolysis.html.
[75] [75] JOVI? V D, LA?NJEVAC U, JOVI? B M, et al. Service life test of non-noble metal composite cathodes for hydrogen evolution in sodium hydroxide solution[J]. Electrochim Acta, 2012, 63: 124-130.
[76] [76] LIU L P, WANG J Y, REN Z B, et al. Ultrathin reinforced composite separator for alkaline water electrolysis: Comprehensive performance evaluation[J]. Int J Hydrog Energy, 2023, 48(62): 23885-23893.
[77] [77] IN LEE H, DUNG D T, KIM J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer[J]. Int J Energy Res, 2020, 44(3): 1875-1885.
[78] [78] AILI D, KRAGLUND M R, TAVACOLI J, et al. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis[J]. J Membr Sci, 2020, 598: 117674.
[79] [79] LIAO Y W, DENG G X, WU H Y, et al. A porous skeleton-supported organic/inorganic composite membrane for high-efficiency alkaline water electrolysis[J]. Adv Funct Materials, 2024, 34(3): 2309871.
[80] [80] ALI M F, LEE H I, BERN?CKER C I, et al. Zirconia toughened alumina-based separator membrane for advanced alkaline water electrolyzer[J]. Polymers, 2022, 14(6): 1173.
[81] [81] YUAN X M, YAN T, LIU Z K, et al. Highly efficient alkaline water electrolysis using alkanolamine-functionalized zirconia-blended separators[J]. ACS Sustainable Chem Eng, 2023, 11(10): 4269-4278.
[82] [82] LI H J, HU X, GENG K, et al. Highly hydrophilic polybenzimidazole/Zirconia composite separator with reduced gas crossover for alkaline water electrolysis[J]. J Membr Sci, 2023, 683: 121844.
[83] [83] KIM S, HAN J H, YUK J, et al. Highly selective porous separator with thin skin layer for alkaline water electrolysis[J]. J Power Sources, 2022, 524: 231059.
[84] [84] TORAY China Torelina PPS film [EB/OL]. https://www.films.toray/ cn/products/torelina/.
[85] [85] AGFA. Technical Data Sheet ZIRFON UTP 220 Separator membrane for alkaline electrolysis[EB/OL]. https://www.agfa.com/specialty- products/solutions/membranes/separator-membranes-for-alkaline-electrolysis/
[86] [86] Carbon Energy Technology Co., Ltd. Alkaline electrolyzed water composite separator [EB/OL]. http://www.carbonenergy.com.cn/a/ jishuyuyanfa/.
[87] [87] RODRíGUEZ J, PALMAS S, SáNCHEZ-MOLINA M, et al. Simple and precise approach for determination of ohmic contribution of diaphragms in alkaline water electrolysis[J]. Membranes, 2019, 9(10): 129.
[88] [88] BRAUNS J, TUREK T. Alkaline water electrolysis powered by renewable energy: A review[J]. Processes, 2020, 8(2): 248.
[89] [89] URSúA A, BARRIOS E L, PASCUAL J, et al. Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements[J]. Int J Hydrog Energy, 2016, 41(30): 12852-12861.
[90] [90] Xinhuanet. China’s first 10,000-ton green hydrogen demonstration project was selected as a 2023 “Dual Carbon” innovative technology research and development case [EB/OL]. http://www.xinhuanet.com/ energy/20231208/6b0600baea294c9c96e4d800148b9d15/c.html.
[91] [91] Qianzhan. The first in China! The 10,000-ton new energy hydrogen production project successfully produced hydrogen [EB/OL]. https://baijiahao.baidu.com/s?id=1770117966557946532&wfr=spider&for=pc.
[92] [92] XIA Y, CHENG H, HE H, et al. Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources[J]. Communications Engineering, 2023, 2(1):22.
[93] [93] HALEEM A A, NAGASAWA K, KURODA Y, et al. A new accelerated durability test protocol for water oxidation electrocatalysts of renewable energy powered alkaline water electrolyzers[J]. Electrochemistry, 2021, 89(2):186-191.
[94] [94] Zhang S S, Ding S R. Ion membrane electrolysis reverse current and its elimination [J]. Chlor-Alkali Industry, 2015, 51(03):11-19.
[95] [95] SANDER R. Compilation of Henry’s law constants (version 5.0.0) for water as solvent[J]. Atmos Chem Phys, 2023, 23(19): 10901-12440.
[96] [96] KIM Y, JUNG S M, KIM K S, et al. Cathodic protection system against a reverse-current after shut-down in zero-gap alkaline water electrolysis[J]. JACS Au, 2022, 2(11): 2491-2500.
[97] [97] HOLMIN S, N?SLUND L ?, INGASON á S, et al. Corrosion of ruthenium dioxide based cathodes in alkaline medium caused by reverse currents[J]. Electrochim Acta, 2014, 146: 30-36.
[98] [98] UCHINO Y, KOBAYASHI T, HASEGAWA S, et al. Relationship between the redox reactions on a bipolar plate and reverse current after alkaline water electrolysis[J]. Electrocatalysis, 2018, 9(1): 67-74.
[99] [99] UCHINO Y, KOBAYASHI T, HASEGAWA S, et al. Dependence of the reverse current on the surface of electrode placed on a bipolar plate in an alkaline water electrolyzer[J]. Electrochemistry, 2018, 86(3): 138-144.
[100] [100] ABDEL HALEEM A, HUYAN J L, NAGASAWA K, et al. Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers[J]. J Power Sources, 2022, 535: 231454.
Get Citation
Copy Citation Text
DIAO Shukai, ZHAO Xiong, YU Zhangtao, CHEN Mingxuan, LIU Ying, LI Senlin, YANG Tianrang, LIU Jianguo. Key Materials Used in Alkaline Water Electrolyzers-A Short Review[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1841
Special Issue:
Received: Dec. 24, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Tianrang YANG (tianrangyang@ncepu.edu.cn)