Optics and Precision Engineering, Volume. 29, Issue 10, 2504(2021)
Co-segmentation of three-dimensional shape clusters by shape similarity
[1] [1] 1孙晓鹏, 李华. 三维网格模型的分割及应用技术综述[J]. 计算机辅助设计与图形学学报, 2005, 17(8): 1647-1655. doi: 10.3321/j.issn:1003-9775.2005.08.001SUNX P, LIH. A survey of 3D mesh model segmentation and application[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(8): 1647-1655. (in Chinese). doi: 10.3321/j.issn:1003-9775.2005.08.001
[2] D I KIM, G S SUKHATME. Semantic labeling of 3D point clouds with object affordance for robot manipulation, 5578-5584(2014).
[3] C R QI, W LIU, C X WU et al. Frustum PointNets for 3D object detection from RGB-D data, 918-927(2018).
[4] [4] 4赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612. doi: 10.3788/OPE.20192707.1601ZHAOCH, ZHANGB M, YUD H, et al. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612. (in Chinese). doi: 10.3788/OPE.20192707.1601
[5] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).
[6] J X LI, B M CHEN, G H LEE. SO-net: self-organizing network for point cloud analysis, 9397-9406(2018).
[7] Y LI, R BU, M SUN et al. PointCNN: convolution on x-transformed points, 820-830(2018).
[8] H LEI, N AKHTAR, A MIAN. Spherical kernel for efficient graph convolution on 3D point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3664-3680(2021).
[9] [9] 9赵夫群, 周明全. 层次化点云去噪算法[J]. 光学 精密工程, 2020, 28(7): 1618-1625. doi: 10.37188/OPE.20202807.1618ZHAOF Q, ZHOUM Q. Hierarchical point cloud denoising algorithm[J]. Opt. Precision Eng., 2020, 28(7): 1618-1625. (in Chinese). doi: 10.37188/OPE.20202807.1618
[10] X YAN, C D ZHENG, Z LI et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling, 5588-5597(2020).
[11] C ESTEVES, C ALLEN-BLANCHETTE, A MAKADIA et al. Learning SO(3) equivariant representations with spherical CNNs, 54-70(2018).
[12] Z Y ZHANG, B S HUA, S K YEUNG. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics. IEEE, 1607-1616(2019).
[13] W HU, A M ZHENG et al. RGCNN: regularized graph CNN for point cloud segmentation, 746-754(2018).
[14] [14] 14莫堃, 尹周平. 基于3D活动轮廓模型的缺陷点云分割方法[J]. 华中科技大学学报(自然科学版), 2011, 39(1): 82-85.MOK, YINZH P. Segmentation of defective point clouds using 3D active contour model[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(1): 82-85. (in Chinese)
[15] R B RUSU, Z C MARTON, N BLODOW et al. Towards 3D Point cloud based object maps for household environments. Robotics and Autonomous Systems, 56, 927-941(2008).
[16] F TARSHA-KURDI, T LANDES, P GRUSSENMEVER. Hough-transform and extended Ransac algorithms for automatic detection of 3D building roof planes from lidar data, 407-412(2007).
[17] D MATURANA, S SCHERER. VoxNet: a 3D Convolutional Neural Network for real-time object recognition, 922-928(2015).
[18] J GUERRY, A BOULCH, B LE SAUX et al. SnapNet-R: consistent 3D multi-view semantic labeling for robotics, 669-678(2017).
[19] C R QI, L YI, H SU et al. PointNet++: deep hierarchical feature learning on point sets in a metric space, 5099-5108(2017).
[20] S N XIE, S N LIU, Z Y CHEN et al. Attentional ShapeContextNet for point cloud recognition, 4606-4615(2018).
[21] [21] 21杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199.YANGJ, DANGJ SH. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199. (in Chinese)
[22] H THOMAS, C R QI, J E DESCHAUD et al. KPConv: flexible and deformable convolution for point clouds. IEEE, 6410-6419(2019).
[23] Z H LIN, S Y HUANG, Y C F WANG. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis, 1797-1806(2020).
[24] Y WANG, Y B SUN, Z W LIU et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38, 1-12(2019).
[25] S Y LAN, R C YU, G YU et al. Modeling local geometric structure of 3D point clouds using geo-CNN, 998-1008(2019).
[26] J S DANG, J YANG. HPGCNN: hierarchical parallel group convolutional neural networks for point clouds processing, 20-37(2021).
[27] Z Y TAO, Y X ZHU, T WEI et al. Multi-head attentional point cloud classification and segmentation using strictly rotation-invariant representations. IEEE Access, 9, 71133-71144(2021).
[28] H SU, V JAMPANI, D Q SUN et al. SPLATNet: sparse lattice networks for point cloud processing, 2530-2539(2018).
[29] R Z HU, L B FAN, L G LIU. Co-segmentation of 3D shapes via subspace clustering. Computer Graphics Forum, 31, 1703-1713(2012).
[30] [30] 30SUNGM, SUH, YUR, et al. Deep functional dictionaries: learning consistent semantic structures on 3D models from functions[EB/OL]. 2018: arXiv: 1805. doi: 10.1299/transjsme.18-0021209957[cs.CV]. https://arxiv.org/abs/1805.09957. doi: 10.1299/transjsme.18-00212
[31] X G WANG, B ZHOU, Z J WANG et al. Efficiently consistent affinity propagation for 3D shapes co-segmentation. The Visual Computer, 34, 997-1008(2018).
[32] Q Y HU, B YANG, L H XIE et al. RandLA-net: efficient semantic segmentation of large-scale point clouds, 11105-11114(2020).
Get Citation
Copy Citation Text
Jun Yang, Min-min Zhang. Co-segmentation of three-dimensional shape clusters by shape similarity[J]. Optics and Precision Engineering, 2021, 29(10): 2504
Category: Information Sciences
Received: Apr. 25, 2021
Accepted: --
Published Online: Nov. 23, 2021
The Author Email: Yang Jun (yangj@mail.lzjtu.cn)