Acta Optica Sinica, Volume. 37, Issue 7, 706004(2017)

Ultra-Stable Optical Frequency Signal Transfer in 210 km Urban Communication Link

Zang Qi1,2,3, Deng Xue1,3, Cao Qun1,2,3, Gao Jing1,3, Jiao Dongdong1,3, Liu Jie1,3, Xu Guanjun1,3, Dong Ruifang1,2,3, Liu Tao1,2,3, and Zhang Shougang1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(26)

    [1] [1] Foreman S M, Holman K W, Hudson D D, et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 2007, 78(2): 021101.

    [2] [2] Sherman J A, Lemke N D, Hinkley N, et al. High-accuracy measurement of atomic polarizability in an optical lattice clock[J]. Physical Review Letters, 2012, 108(15): 153002.

    [3] [3] Huntemann N, Okhapkin M, Lipphardt B, et al. High-accuracy optical clock based on the octupole transition in 171Yb+[J]. Physical Review Letters, 2012, 108(9): 090801.

    [4] [4] Swallows M D, Bishof M, Lin Y G, et al. Suppression of collisional shifts in a strongly interacting lattice clock[J]. Science, 2011, 331(6020): 1043-1046.

    [5] [5] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218.

    [6] [6] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486): 71-75.

    [7] [7] Ushijima I, Takamoto M, Das M, et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3): 185-189.

    [8] [8] Fujieda M, Gotoh T, Nakagawa F, et al. Carrier-phase-based two-way satellite time and frequency transfer[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(12): 2625-2630.

    [9] [9] Tseng W, Lin S Y, Feng K M, et al. Improving TWSTFT short-term stability by network time transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 161-167.

    [10] [10] Desurvier E, Zervas M N. Erbium-doped fiber amplifiers: Principles and applications[M]. New York: Wiley-Interscience, 1994: 3-26.

    [11] [11] Becker P C, Olsson N A, Simpson J R. Erbium-doped fiber amplifiers: Fundamentals and technology[M]. San Diego: Academic Press, 1999: 258-259.

    [12] [12] Predehl K. A 920 km optical fiber link for frequency metrology at the 19th decimal place[D]. München: Ludwig-Maximilians-Universitt, 2012.

    [13] [13] Droste S, Ozimek F, Udem T, et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 2013, 111(11): 110801.

    [14] [14] Chiodo N, Quintin N, Stefani F, et al. Cascaded optical fiber link using the internet network for remote clocks comparison[J]. Optics Express, 2015, 23(26): 33927-33937.

    [15] [15] Kim J, Schnatz H, Wu D S, et al. Optical injection locking-based amplification in phase-coherent transfer of optical frequencies[J]. Optics Letters, 2015, 40(18): 4198-4201.

    [16] [16] Calonico D, Bertacco E K, Calosso C E, et al. High-accuracy coherent optical frequency transfer over a doubled 642 km fiber link[J]. Applied Physics B, 2014, 117(3): 979-986.

    [17] [17] Newbury N R, Williams P A, Swann W C. Coherent transfer of an optical carrier over 251 km[J]. Optics Letters, 2007, 32(21): 3056-3058.

    [18] [18] Schediwy S W, Gozzard D, Baldwin K G H, et al. High-precision optical-frequency dissemination on branching optical-fiber networks[J]. Optics Letters, 2013, 38(15): 2893-2896.

    [19] [19] Liu Q, Han S L, Wang J L, et al. Simultaneous frequency transfer and time synchronization over a 430 km fiber backbone network using a cascaded system[J]. Chinese Optics Letters, 2016, 14(7): 070602.

    [20] [20] Ma C Q, Wu L F, Jiang Y Y , et al. Coherence transfer of sub hertz-linewidth laser light via an 82 km fiber link[J]. Applied Physics Letters, 2015, 107(26): 261109.

    [21] [21] Deng X, Liu J, Jiao D D, et al. Coherent transfer of optical frequency over 112 km with instability at the 10-20 level[J]. Chinese Physics Letters, 2016, 33(11): 114202.

    [22] [22] Zang Qi, Deng Xue, Liu Jie, et al. Optimization design for bidirectional erbium-doped fiber amplifier used in long distance optical frequency transfer link[J]. Acta Optica Sinica, 2017, 37(3): 0306006.

    [23] [23] Cao Qun, Deng Xue, Zang Qi, et al. Two-way optical phase comparison method based on local measurement[J]. Chinese J Lasers, 2017, 44(5): 0504004.

    [24] [24] Jiang H F. Development of ultra-stable laser sources and long-distance optical link via telecommunication networks[D]. Paris: Université Pierre et Marie Curie, 2010.

    [25] [25] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 2008, 25(8): 1284-1293.

    [26] [26] Jiao Dongdong, Gao Jing, Liu Jie, et al. Development and application of communication band narrow linewidth lasers[J]. Acta Physica Sinica, 2015, 64(19): 190601.

    CLP Journals

    [1] Zhou Xu, Chen Faxi, Zhao Kan, Liu Tao, Zhang Shougang. Time-Delay Measurement Techniques for Time Transfer over Optical Fibers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81201

    Tools

    Get Citation

    Copy Citation Text

    Zang Qi, Deng Xue, Cao Qun, Gao Jing, Jiao Dongdong, Liu Jie, Xu Guanjun, Dong Ruifang, Liu Tao, Zhang Shougang. Ultra-Stable Optical Frequency Signal Transfer in 210 km Urban Communication Link[J]. Acta Optica Sinica, 2017, 37(7): 706004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 3, 2017

    Accepted: --

    Published Online: Jul. 10, 2017

    The Author Email:

    DOI:10.3788/aos201737.0706004

    Topics