Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 2, 170(2025)
Convolutional Neural Network accelerator based on computing in memory
[5] [5] SEBASTIAN A, LE GALLO M, KHADDAM-ALJAMEH R, et al. Memory devices and applications for in-memory computing[J]. Nature Nanotechnology, 2020, 15(7): 529-544. doi: 10.1038/s41565-020-0655-z.
[6] [6] HUANG Xiaohe, LIU Chunsen, JIANG Yugang, et al. In-memory computing to break the memory wall[J]. Chinese Physics B, 2020, 29(7): 078504. doi: 10.1088/1674-1056/ab90e7.
[11] [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386.
[12] [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv, 2014-11-18.
[15] [15] WANG Yimin, ZOU Zhuo, ZHENG Lirong. Design framework for SRAM-based computing-in-memory edge CNN accelerators[C]//2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu, Korea: IEEE, 2021: 1-5.
[16] [16] TAN Fei, WANG Yiming, YANG Yiming, et al. A ReRAM-based computing-in-memory convolutional-macro with customized 2T2R bit-cell for AIoT chip IP applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(9): 1534-1538. doi: 10.1109/TCSII.2020.3013336.
[17] [17] YANG Jiancheng, CUI Aoxin, JIA Song, et al. A configurable computing-in-memory structure based on convolutional neural network[C]//2021 China Semiconductor Technology International Conference (CSTIC). Shanghai, China: IEEE, 2021: 1-3.
[18] [18] LIU Bicheng, GU Shouzhen, CHEN Mingsong, et al. An efficient racetrack memory-based processing-in-memory architecture for convolutional neural networks[C]//2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). Guangzhou, China: IEEE, 2017: 383-390. doi: 10.1109/ISPA/IUCC.2017.00061.
[19] [19] XUE C X, CHEN W H, LIU J S, et al. Embedded 1 Mb ReRAM-based computing-in-memory macro with multibit input and weight for CNN-based AI edge processors[J]. IEEE Journal of Solid-State Circuits, 2020, 55(1): 203-215.
[20] [20] MOCHIDA R, KOUNO K, HAYATA Y, et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture[C]//2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA: IEEE, 2018: 175-176. doi: 10.1109/VLSIT.2018.8510676.
Get Citation
Copy Citation Text
LU Yingying, SUN Xiangyu, JI Weiliang, XING Zhanqiang. Convolutional Neural Network accelerator based on computing in memory[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(2): 170
Category:
Received: Sep. 2, 2023
Accepted: Mar. 13, 2025
Published Online: Mar. 13, 2025
The Author Email: Xiangyu SUN (71573841@qq.com)