Optical Communication Technology, Volume. 46, Issue 6, 1(2022)
Reseach on reliability of 25 Gb/s coarse wavelength division multiplexing distributed feedback laser
[1] [1] SAARELA A, MELANEN P, VILOKKINEN V, et al. High-temperature AlGaInAs-based 25G DML-DFB lasers operating in O-band for data center use[EB/OL]. [2022-01-28]. https://doi.org/10.1117/12.2578257.
[2] [2] TURGUNOV B, JURAEV N, TOSHPULATOV S, et al. Researching of the degradation process of laser diodes used in optical transport networks[C]//IEEE. Proceedings of 2021 International Conference on Information Science and Communications Technologies (ICISCT). New York: IEEE, 2021: 1-4.
[3] [3] HUANG J S. Design-in reliability for modern wavelength-division multiplex (WDM) distributed feedback (DFB) InP lasers[J]. Applied Physics Research, 2012, 4(2): 15-28.
[4] [4] HUANG J S. Burn-in aging behavior and analytical modeling of wavelength-division multiplexing semiconductor lasers: is the swift burn-in feasible for long-term reliability assurance?[EB/OL]. [2022-01-28]. https://downloads.hindawi.com/journals/aoe/2013/568945.pdf.
[5] [5] HUANG J S, HUANG S C, WU N Y, et al. High-reliability, high-performance 25 Gb/s directly modulated uncooled lasers for 5G wireless communications[J]. Applied Science and Innovative Research, 2021, 5(1): 56-64.
[7] [7] VILOKKINEN V, SAVOLAINEN P, SIPILA P. Reliability analysis of AlGaInAs lasers at 1.3 μm[J]. Electronics Letters, 2004, 40(23): 1489-1490.
[8] [8] HERRICK R W, GUO Q. Introduction to optoelectronic devices[EB/OL]. [2022-01-28]. https://www.sciencedirect.com/science/article/pii/B9780128192542000102.
[9] [9] JOHNSON L A. Laser diode burn-in and reliability testing[J]. IEEE Communications Magazine, 2006, 44(2): 4-7.
[10] [10] HERRICK R W, ROXLO C B, SJOLUND O T H, et al. Methods for testing lasers using optical burn-in: 8067949[P]. 2011-11-29.
[11] [11] FUKUDA M. Reliability and degradation of semiconductor lasers and LEDs[M]. Boston: Artech House, 1991.
[12] [12] DESHAYES Y, VERDIER F, BECHOU L, et al. Estimation of lifetime distributions on 1550-nm DFB laser diodes using Monte-Carlo statistic computations[C]//SPIE. Proceedings of SPIE - The International Society for Optical Engineering. Strasbourg: SPIE, 2004: 1-8.
[13] [13] UEDA O, PEARTON S J. Materials and reliability handbook for semiconductor optical and electron devices[M]. New York: Springer, 2013.
[14] [14] OHRING M, KASPRZAK L. Reliability and failure of electronic materials and devices[M]. New York: Academic Press, 2014.
[15] [15] JOHNSON L A, TEH A. Measuring high power laser diode junction temperature and package thermal impedance[EB/OL]. [2022-01-28]. https://www.newport.com.cn/medias/sys_master/images/images/h66/h78/879705. 0142750/AN30-Measuring-High-Power-Laser-Diode-Junction-Temperatureand-Package-Thermal-Impedance.pdf.
[16] [16] DESHAYES Y, BECHOU L, VERDIER F, et al. Long-term reliability prediction of 935 nm LEDs using failure laws and low acceleration factor ageing tests[J]. Quality and Reliability Engineering International, 2005, 21: 571-594.
[17] [17] HUANG J S. Reliability of optoelectronics[EB/OL]. [2022-01-28]. https://www.sciencedirect.com/science/article/pii/B978178242221100006X ?via%3Dihub.
[18] [18] HERRICK R W. Reliability engineering in optoelectronic devices and fiber optic transceivers[EB/OL]. [2022-01-28]. https://www.sciencedirect.com/science/article/pii/B9780128192542000035.
Get Citation
Copy Citation Text
ZHANG Yuqi, LIU Wanju, ZHAO Jia. Reseach on reliability of 25 Gb/s coarse wavelength division multiplexing distributed feedback laser[J]. Optical Communication Technology, 2022, 46(6): 1
Category:
Received: Jan. 28, 2022
Accepted: --
Published Online: Jan. 28, 2023
The Author Email: