Electronics Optics & Control, Volume. 26, Issue 11, 11(2019)
Coastline Segmentation of SAR Image Based on Super-pixel Merging
[1] [1] DUAN Y, LIU F, JIAO L, et al. Adaptive hierarchical multinomial latent model with hybrid kernel function for SAR image semantic segmentation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(1): 5997-6015.
[3] [3] REN X F, MALIK J. Learning a classification model for segmentation[C]//International Conference on Computer Vision, IEEE, 2003: 10-17.
[4] [4] ZHANG Y, LI X, GAO X, et al.A simple algorithm of superpixel segmentation with boundary constraint[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(7): 1502-1514.
[6] [6] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274-2282.
[9] [9] QIN F, GUO J, LANG F. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 12(1): 13-17.
[10] [10] WANG A P, WANG S G, LUCIEER A. Segmentation of multispectral high-resolution satellite imagery based on integrated feature distributions[J]. International Journal of Remote Sensing, 2010, 31(6): 1471-1483.
[11] [11] OJALA T, PIETIKAINEN M. Unsupervised texture segmentation using feature distributions[J]. Pattern Recognition, 1997, 32(3): 477-486.
[12] [12] HU X, TAO C V, PRENZEL B. Automatic segmentation of high-resolution satellite imagery by integrating texture, intensity, and color features[J]. Photogrammetric Engineering & Remote Sensing, 2015, 71(12): 1399-1406.
Get Citation
Copy Citation Text
PENG Chao, WEI Xueyun. Coastline Segmentation of SAR Image Based on Super-pixel Merging[J]. Electronics Optics & Control, 2019, 26(11): 11
Category:
Received: Dec. 11, 2018
Accepted: --
Published Online: Dec. 15, 2020
The Author Email: