Optics and Precision Engineering, Volume. 14, Issue 6, 1093(2006)
Principle component representations for machine noise monitoring
[5] [5] MALHI A,GAO R.PCA-based feature selection scheme for machine defect classification[J].IEEE Transaction on Instrumentation and Measurement,2004,53:1517-1525.
[7] [7] JOLLIFFE I T.Principal component analysis[M].Springer,New York,1986.
[8] [8] TURK M,PENTLAND A.Face recognition using eigenfaces[C].Proc.IEEE Conf.on Comp.Vision and Patt.Recog.,1991:586-591.
[9] [9] BAYDAR N,CHEN Q,BALL A,et al.Detection of incipient tooth defect in helical gears using multivariate statistics[J].Mechanical Systems and Signal Processing,2001,15:303-321.
[10] [10] FAN X,ZUO M J.Gearbox fault detection using Hilbert and wavelet packet transform[J].Mechanical Systems and Signal Processing,2006,20:966-982.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Principle component representations for machine noise monitoring[J]. Optics and Precision Engineering, 2006, 14(6): 1093