Infrared and Laser Engineering, Volume. 52, Issue 7, 20230343(2023)

Application of nodal aberration theory in aberration compensation of the imaging system (invited)

Bofu Xie1, Shuai Zhang1, Haoran Li1, Hao Feng1, Da Li1, and Xing Zhao1,2
Author Affiliations
  • 1Institute of Modern Optics Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • show less
    Figures & Tables(13)
    Schematic diagram of the pupil vector \begin{document}$ \overrightarrow \rho ' $\end{document} when a freeform surface located at a non-aperture location
    Flowchart of iterative algorithm for freeform surface optimization based on nodal aberration theory
    Simulation diagram of freeform surface telescopic eccentric system
    Wave aberration distribution map of the telescopic eccentric system (\begin{document}$ {{\lambda = 632}}{\text{.8 nm}} $\end{document})
    Wave aberration distribution map of the eccentric telescope system before and after optimization by two methods (\begin{document}$ {{\lambda = 632}}{\text{.8 nm}} $\end{document})
    Light spot patterns of the eccentric telescope system before and after optimization by two methods. (a) Before optimization; (b) After NAT optimization; (c) After SAT optimization
    MTF curve at the image plane of the system before and after optimizing by two methods
    Schematic diagram of aberration compensation experiment for telescopic eccentric system based on SLM
    Phase maps of freeform surfaces optimized by two methods. (a) NAT optimization; (b) SAT optimization
    Experimental spot patterns of the eccentric telescope system. (a) Before compensation; (b) After compensation by NAT optimization method; (c) After compensation by SAT optimization method
    • Table 1. Fringe Zernike terms and coefficients corresponding to primary astigmatism, defocusing, and primary coma terms

      View table
      View in Article

      Table 1. Fringe Zernike terms and coefficients corresponding to primary astigmatism, defocusing, and primary coma terms

      Wave aberration termsCorresponding Zernike terms and coefficients
      Primary astigmatism$ \begin{gathered} {\overrightarrow Z _{5/6}},{\alpha ^2}{\overrightarrow C _{5/6}} \\ {\overrightarrow Z _{7/8}},3{\alpha ^2}\left( {{{\overrightarrow C }_{7/8}}\overrightarrow H } \right) \\ {Z_9},12{\alpha ^2}{\beta ^2}\left( {{C_9}{{\overrightarrow H }^2}} \right) \\ {\overrightarrow Z _{10/11}},3{\alpha ^3}\beta \left( {{{\overrightarrow C }_{10/11}}{{\overrightarrow H }^ * }} \right) \\ {\overrightarrow Z _{12/13}},\left[ {12{\alpha ^2}{\beta ^2}\left( {{{\left| {\overrightarrow H } \right|}^2}{{\overrightarrow C }_{12/13}}} \right) - 3{\alpha ^2}{{\overrightarrow C }_{12/13}}} \right] \\ \end{gathered} $
      Defocus$\begin{array}{l}{Z}_{4},{\alpha }^{2}{C}_{4}\\ {\overrightarrow{Z} }_{7/8},3{\alpha }^{2}\beta \left({\overrightarrow{C} }_{7/8}\cdot \overrightarrow{H}\right)\\ {Z}_{9},12{\alpha }^{2}{\beta }^{2}{C}_{9}(\overrightarrow{H}\cdot \overrightarrow{H})\\ {\overrightarrow{Z} }_{12/13},6{\alpha }^{2}{\beta }^{2}\left({\overrightarrow{C} }_{12/13}\cdot {\overrightarrow{H} }^{2}\right)\end{array}$
      Primary coma$ \begin{gathered} {\overrightarrow Z _{7/8}},{\alpha ^2}{\overrightarrow C _{7/8}} \\ {Z_9},8{\alpha ^3}\beta \left( {{C_9}\overrightarrow H } \right) \\ {\overrightarrow Z _{12/13}}{\text{,4}}{\alpha ^3}\beta \left( {{{\overrightarrow C }_{12/13}}{{\overrightarrow H }^ * }} \right) \\ \end{gathered} $
    • Table 2. Simulation parameter table of freeform surface compensating telescopic eccentric system’s aberration

      View table
      View in Article

      Table 2. Simulation parameter table of freeform surface compensating telescopic eccentric system’s aberration

      SurfaceTypeRadius/mmThickness/mmGlassRefraction/ReflexSemi-diameter/mmDecenter/Tilt
      ObjectSphereInfInf-Refraction--
      StopSphereInf470.00-Refraction4.00-
      2ZernikeInf−283.00-Reflex4.10Tilt 4.6°
      3Sphere−51.68−5.00K9Refraction12.70Decenter 2 mm
      4SphereInf−197.50-Refraction12.70-
      5Sphere−51.68−5.00K9Refraction12.70-
      6SphereInf−71.00-Refraction12.70-
      7Sphere−51.68−5.00K9Refraction12.70-
      8SphereInf−96.23-Refraction12.70-
      ImageSphereInf0.00-Refraction1.00-
    • Table 3. Optimized various coefficients of freeform surfaces to compensate the telescopic eccentric system’s aberration by two methods

      View table
      View in Article

      Table 3. Optimized various coefficients of freeform surfaces to compensate the telescopic eccentric system’s aberration by two methods

      Standard Zernike termsZ4Z5Z6Z7Z8
      SAT1.1150e-48.5520e-500−1.4553e-4
      NAT9.9357e-51.1608e-400−1.5360e-4
    Tools

    Get Citation

    Copy Citation Text

    Bofu Xie, Shuai Zhang, Haoran Li, Hao Feng, Da Li, Xing Zhao. Application of nodal aberration theory in aberration compensation of the imaging system (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230343

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2023

    Accepted: --

    Published Online: Aug. 16, 2023

    The Author Email:

    DOI:10.3788/IRLA20230343

    Topics