[1] J. W.Forbes. Impedance matching technique. Shock Wave Compression of Condensed Matter, 31-57(2012).
[2] J. M.Walsh, M.Walsh J., H.Rice M., G.McQueen R., F. and, M. H.Rice, M.Walsh J., H.Rice M., G.McQueen R., F. and, R. G.McQueen, M.Walsh J., H.Rice M., G.McQueen R., F. and, F. L.Yarger. Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev., 108, 196(1957).
[4] L. V.Al’tshuler, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, K. K.Krupnikov, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, B. N.Ledenev, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, V. I.Zhuchikhin, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, M. I.Brazhnik. Dynamic compressibility and equation of state of iron under high pressure. Sov. Phys. JETP, 34, 606(1958).
[8] B. K.Godwal, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, F.González-Cataldo, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, A. K.Verma, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, L.Stixrude, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, R.Jeanloz. Stability of iron crystal structures at 0.3–1.5 TPa. Earth Planet. Sci. Lett., 409, 299(2015).
[9] A. S.Vladimirov, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, N. P.Voloshin, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, V. N.Nogin, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, A. V.Petrovtsev, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, V. A.Simonenko. Shock compressibility of aluminum at p ≳ 1 Gbar. JETP Lett, 39, 82(1984).
[12] S. R.Baty, R.Baty S., L.Burakovsky, D.Errandonea and, L.Burakovsky, R.Baty S., L.Burakovsky, D.Errandonea and, D.Errandonea. Ab initio phase diagram of copper. Crystals, 11, 537(2021).
[13] S. R.Baty, R.Baty S., L.Burakovsky, D.Errandonea and, L.Burakovsky, R.Baty S., L.Burakovsky, D.Errandonea and, D.Errandonea. Ab initio phase diagram of silver. J. Phys.: Condens. Matter, 33, 485901(2021).
[14] J.-P.Davis, J.-P.Davis, L.Brown J., C. and, J. L.Brown, J.-P.Davis, L.Brown J., C. and, C. T.Seagle. Off-Hugoniot mechanical response of metal standards at the Z machine(2018).
[16] L.Burakovsky, L.Burakovsky, P.Chen S., L.Preston D., D. and, S. P.Chen, L.Burakovsky, P.Chen S., L.Preston D., D. and, D. L.Preston, L.Burakovsky, P.Chen S., L.Preston D., D. and, D. G.Sheppard. Z methodology for phase diagram studies: Platinum and tantalum as examples. J. Phys.: Conf. Ser., 500, 162001(2014).
[18] C.Seagle, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, B.Reinhart, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, S.Alexander, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, J.Brown, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, J.-P.Davis. Shock compression of iridium(2019).
[19] H. K.Mao, K.Mao H., J.Xu, P. and, J.Xu, K.Mao H., J.Xu, P. and, P. M.Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673(1986).
[20] W. J.Carter, J.Carter W., P.Marsh S., N.Fritz J., R. and, S. P.Marsh, J.Carter W., P.Marsh S., N.Fritz J., R. and, J. N.Fritz, J.Carter W., P.Marsh S., N.Fritz J., R. and, R. G.McQueen. Accurate Characterization of the High-Pressure Environment, 147(1971).
[22] M. K.Wallace, K.Wallace M., M.Winey J., Y. and, J. M.Winey, K.Wallace M., M.Winey J., Y. and, Y. M.Gupta. Shock compression of silver to 300 GPa: Wave profile measurements and melting transition. Phys. Rev. B, 104, 014101(2021).
[23] C. A.McCoy, A.McCoy C., D.Knudson M., S.Root and, M. D.Knudson, A.McCoy C., D.Knudson M., S.Root and, S.Root. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures. Phys. Rev. B, 96, 174109(2017).
[26] N. N.Kalitkin, N.Kalitkin N., L. V.Kuz’mina. Copper as a shockwave standard. Dokl. Phys., 43, 276(1998).
[31] S.Root, S.Root, P.Townsend J., M. and, J. P.Townsend, S.Root, P.Townsend J., M. and, M. D.Knudson. Shock compression of fused silica: An impedance matching standard. J. Appl. Phys., 126, 165901(2019).
[32] L.Burakovsky, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, D. L.Preston, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, S. D.Ramsey, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, R. S.Baty. Analytic model of principal Hugoniot at all pressures. J. Appl. Phys., 132, 215109(2022).
[33] N. N.Kalitkin, N.Kalitkin N., L. V.Kuzmina. Quantum-statistical Hugoniots of porous substances. Mat. Model., 10, 111(1998).
[34] V. E.Fortov, N. N.Kalitkin, N.Kalitkin N., E.Fortov V., L. V.Kuzmina, V.Al’tshuler L., F.Trunin R., A. and, L. V.Al’tshuler, E.Fortov V., V.Al’tshuler L., F.Trunin R., A. and, R. F.Trunin, E.Fortov V., V.Al’tshuler L., F.Trunin R., A. and, A. I.Funtikov. Wide-range characteristic thermodynamic curves. High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, 116(2004).
[35] N. N.Kalitkin, N.Kalitkin N., L. V.Kuzmina. Shock Hugoniots of 83 substances. Chem. Phys. Rep., 18, 1913(2000).
[36] J. D.Johnson. General features of Hugoniots(1996).
[37] J. D.Johnson. General features of Hugoniots—II(1997).
[42] L. V.Al’tshuler, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, N. N.Kalitkin, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, L. V.Kuz’mina, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, B. S.Chekin. Shock adiabats for ultrahigh pressures. Sov. Phys. JETP, 45, 167(1977).
[43] N.Ozaki, N.Ozaki, J.Nellis W., T.Mashimoet?al., W. J.Nellis, N.Ozaki, J.Nellis W., T.Mashimoet?al., T.Mashimoet?al.. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Sci. Rep., 6, 26000(2016).
[44] W. J.Nellis. Warm dense matter at shock pressures up to 20 TPa (200 Mbar). Ultracondensed Matter by Dynamic Compression, 130-138(2017).
[46] N. N.Kalitkin, N.Kalitkin N., V.Kuzmina L., A. and, L. V.Kuzmina, N.Kalitkin N., V.Kuzmina L., A. and, A. I.Funtikov. The main Hugoniots of 10 metals. Mat. Model., 14, 27(2002).
[47] E. S.Ivanchenko, S.Ivanchenko E., N.Kalitkin N., L. and, N. N.Kalitkin, S.Ivanchenko E., N.Kalitkin N., L. and, L. V.Kuz’mina. Main Hugoniot adiabats in the tefis database of thermophysical properties of substances (TEFIS). Math. Models Comput. Simul., 1, 383(2009).
[48] S. P.Marsh. LASL Shock Hugoniot Data(1980).
[49] S. A.Thomas, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, R. S.Hixson, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, M. C.Hawkins, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, O. T.Strand. Wave speeds in single-crystal and polycrystalline copper. Int. J. Impact Eng., 139, 103506(2020).
[51] P. R.Levashov, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, K. V.Khishchenko, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, I. V.Lomonosov, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, V. E.Fortov. Database on shock-wave experiments and equations of state available via internet. AIP Conf. Proc., 706, 87(2004).
[53] M. A.Kadatskiy. Quantum-statistical calculation of thermodynamic properties of simple substances and mixtures at high energy densities(2019).
[56] V. P.Kopyshev, A. F.Nikiforov, F.Nikiforov A., G.Novikov V., V. and, V. G.Novikov, F.Nikiforov A., G.Novikov V., V. and, V. B.Uvarov. Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State(2005).
[59] L. R.Veeser, R.Veeser L., C.Solem J., A. and, J. C.Solem, R.Veeser L., C.Solem J., A. and, A. J.Lieber. Impedance-match experiments using laser-driven shock waves. Appl. Phys. Lett., 35, 761(1979).
[62] L. D.Landau, D.Landau L., E. M.Lifshitz. Statistical Physics(1969).
[65] L. V.Al’tshuler, V.Al’tshuler L., E.Brusnikin S., E. and, S. E.Brusnikin, V.Al’tshuler L., E.Brusnikin S., E. and, E. A.Kuz’menkov. Isotherms and Grüneisen functions for 25 metals. J. Appl. Mech. Tech. Phys., 28, 129(1987).
[66] C. W.Greeff, W.Greeff C., C.Boettger J., J.Graf M., J. and, J. C.Boettger, W.Greeff C., C.Boettger J., J.Graf M., J. and, M. J.Graf, W.Greeff C., C.Boettger J., J.Graf M., J. and, J. D.Johnson. Theoretical investigation of the Cu EOS standard. J. Phys. Chem. Solids, 67, 2033(2006).
[67] N. Yu.Orlov, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, M. A.Kadatskiy, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, O. B.Denisov, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, K. V.Khishchenko. Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas. Matter Radiat. Extremes, 4, 054403(2019).