Advanced Fiber Materials, Volume. 7, Issue 1, 00472(2025)

Scalable and Sustainable Superhydrophobic Cooling Metacotton

Chao-Qun Ma1... Chao-Hua Xue1,*, Xiao-Jing Guo1, Jun Liang2,3,4,5, Shiliang Zhang2,3,4,5, Li Wan1, Hui-Di Wang1, Meng-Chen Huang1, Yong-Gang Wu1, Wei Fan6,**, and Chong Hou37,*** |Show fewer author(s)
Author Affiliations
  • 1College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
  • 2State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
  • 5School of Physical Education, Huazhong University of Science and Technology, Wuhan 430074, China
  • 6School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
  • 7School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(48)

    [1] [1] Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X. Reference genome sequences of two cultivated allotetraploid cottons, gossypium hirsutum and gossypium barbadense. Nat Genet. 2018;51:224–9.

    [2] [2] Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, Jiang Y, Ke H, Chen B, Liu Z, Gu Q, Wang Z, Wang G, Yang J, Wu J, Yan Y, Meng C, Li L, Li X, Mo S, Wu N, Ma L, Chen L, Zhang M, Si A, Yang Z, Wang N, Wu L, Zhang D, Cui Y, Cui J, Lv X, Li Y, Shi R, Duan Y, Tian S, Wang X. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet. 2021;53:1385–91.

    [3] [3] Lord E. The evolution of gossypium. Nature. 1948;162:716.

    [4] [4] Balls EL. Studies of the cotton plant. Nature. 1915;96:144–5.

    [5] [5] Turner HA, Nabar GM, Scholefield F. Oxidising agents and vat-dyed cotton. Nature. 1935;135:68.

    [6] [6] Guo C, Zhao B, Fan S. Adjoint kirchhoff’s law and general symmetry implications for all thermal emitters. Phys Rev X. 2022;12:021023.

    [7] [7] Shabanian S, Khatir B, Nisar A, Golovin K. Rational design of perfluorocarbon-free oleophobic textiles. Nat Sustain. 2020;3:1059–66.

    [8] [8] Deng B, Cai R, Yu Y, Jiang H, Wang C, Li J, Li L, Yu M, Li J, Xie L, Huang Q, Fan C. Laundering durability of superhydrophobic cotton fabric. Adv Mater. 2010;22:5473–7.

    [9] [9] Fang L, Sun F, Liu Q, Chen W, Zhou H, Su C, Fang K. A cleaner production process for high performance cotton fabrics. J Clean Prod. 2021;317:128500.

    [10] [10] Chithra A, Wilson P, Vijayan S, Rajeev R, Prabhakaran K. Thermally insulating robust carbon composite foams with high emi shielding from natural cotton. J Mater Sci Technol. 2021;94:113–22.

    [11] [11] Dong J, Peng Y, Zhang Y, Chai Y, Long J, Zhang Y, Zhao Y, Huang Y, Liu T. Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 2023;15:181.

    [12] [12] Jeon SK, Kim JT, Kim MS, Kim IS, Park SJ, Jeong H, Lee GJ, Kim YJ. Scalable, patternable glass-infiltrated ceramic radiative coolers for energy-saving architectural applications. Adv Sci. 2023;10:2302701.

    [13] [13] Rocher-Ros G, Stanley EH, Loken LC, Casson NJ, Raymond PA, Liu S, Amatulli G, Sponseller RA. Global methane emissions from rivers and streams. Nature. 2023;621:530–5.

    [14] [14] Hang Z, Xiaoyang G, Fuguang L. Revitalize china’s cotton industry. Nature. 2022;604:25.

    [15] [15] Huang M-C, Xue C-H, Huang J, Liu B-Y, Guo X-J, Bai Z-X, Wei R-X, Wang H-D, Du M-M, Jia S-T, Chen Z, Lai Y. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem Eng J. 2022;442:136239.

    [16] [16] Wang H-D, Xue C-H, Guo X-J, Liu B-Y, Ji Z-Y, Huang M-C, Jia S-T. Superhydrophobic porous film for daytime radiative cooling. Appl Mater Today. 2021;24:101100.

    [17] [17] Liu BY, Xue CH, Zhong HM, Guo XJ, Wang HD, Li HG, Du MM, Huang MC, Wei RX, Song LG, Chang B, Wang Z. Multi-bioinspired self-cleaning energy-free cooling coatings. J Mater Chem A. 2021;9:24276–82.

    [18] [18] Huang MC, Yang M, Guo XJ, Xue CH, Wang HD, Ma CQ, Bai Z, Zhou X, Wang Z, Liu BY, Wu YG, Qiu CW, Hou C, Tao G. Scalable multifunctional radiative cooling materials. Prog Mater Sci. 2023;137:101144.

    [19] [19] Grocholski B. Cooling in a warming world. Science. 2020;370:776–7.

    [20] [20] Wu XE, Wang Y, Liang X, Zhang Y, Bi P, Zhang M, Li S, Liang H, Wang S, Wang H, Lu H, Zhang Y. Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv Funct Mater. 2023;34:2313539.

    [21] [21] Xue S, Huang G, Chen Q, Wang X, Fan J, Shou D. Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 2024;16:153.

    [22] [22] Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062–6.

    [23] [23] Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, Zhang N, Xu C, Ng T, Yu Z, Ooi B, Gan Q. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain. 2019;2:718–24.

    [24] [24] Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science. 2018;362:315–9.

    [25] [25] Meng X, Chen Z, Qian C, Li Q, Chen X. Durable and mechanically robust superhydrophobic radiative cooling coating. Chem Eng J. 2023;478:147341.

    [26] [26] Shi M, Song Z, Ni J, Du X, Cao Y, Yang Y, Wang W, Wang J. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano. 2023;17:2029–38.

    [27] [27] Lin K, Chen S, Zeng Y, Ho TC, Zhu Y, Wang X, Liu F, Huang B, Chao CY-H, Wang Z, Tso CY. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science. 2023;382:691–7.

    [28] [28] Zhao J, Meng Q, Li Y, Yang Z, Li J. Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl Mater Interfaces. 2023;15:47286–93.

    [29] [29] Zhao X, Li T, Xie H, Liu H, Wang L, Qu Y, Li SC, Liu S, Brozena AH, Yu Z, Srebric J, Hu L. A solution-processed radiative cooling glass. Science. 2023;382:684–91.

    [30] [30] Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse PB, Xu W, Fan S, Zhu J. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol. 2021;16:1342–8.

    [31] [31] Wu X, Li J, Jiang Q, Zhang W, Wang B, Li R, Zhao S, Wang F, Huang Y, Lyu P, Zhao Y, Zhu J, Zhang R. An all-weather radiative human body cooling textile. Nat Sustain. 2023;6:1446–54.

    [33] [33] Gu B, Xu Q, Wang H, Pan H, Zhao D. A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments. ACS Nano. 2023;17:18308–17.

    [34] [34] Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science. 2021;373:692–6.

    [35] [35] Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain. 2018;1:105–12.

    [36] [36] Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater. 2018;30:1802152.

    [37] [37] Pakdel E, Wang X. Thermoregulating textiles and fibrous materials for passive radiative cooling functionality. Mater Design. 2023;231:112006.

    [38] [38] Pan S, Peng H. Making passive daytime radiative cooling metafabrics on a large scale. Adv Fiber Mater. 2022;4:4.

    [39] [39] Natalio F, Fuchs R, Cohen SR, Leitus G, Fritz-Popovski G, Paris O, Kappl M, Butt H-J. Biological fabrication of cellulose fibers with tailored properties. Science. 2017;357:1118–22.

    [40] [40] Li J, Tang F, Bi Y, Sun H, Huang L, Chen L. Engineering biomimetic cellulose fabric for sustainably and durably cooling human body. Nano Energy. 2023;117:108921.

    [41] [41] Wu YG, Xue CH, Guo XJ, Huang MC, Wang HD, Ma CQ, Wang X, Shao ZY. Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient. Chem Eng J. 2023;471:144313.

    [42] [42] Zhang J, Xu S, Cai Y, Yi L. Colorfully coated cotton fabric for passive daytime radiative cooling. Prog Org Coat. 2023;182:107678.

    [43] [43] Hu M, Peil S, Xing Y, Döhler D, da Caire SL, Binder WH, Kappl M, Bannwarth MB. Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules. Mater Horiz. 2018;5:51–8.

    [44] [44] Zhong H, Li Y, Zhang P, Gao S, Liu B, Wang Y, Meng T, Zhou Y, Hou H, Xue C, Zhao Y, Wang Z. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano. 2021;15:10076–83.

    [45] [45] Malek K, Coppens MO. Knudsen self- and fickian diffusion in rough nanoporous media. J Chem Phys. 2003;119:2801–11.

    [46] [46] Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW. Thermal conductivity of monolithic organic aerogels. Science. 1992;255:971–2.

    [47] [47] Zhang L, Guo Y, Mo R, Liu X, Wang G, Wu R, Liu H. Hierarchical weaving metafabric for unidirectional water transportation and evaporative cooling. Adv Funct Mater. 2023;33:2307590.

    [48] [48] Yang W, Lin S, Gong W, Lin R, Jiang C, Yang X, Hu Y, Wang J, Xiao X, Li K, Li Y, Zhang Q, Ho JS, Liu Y, Hou C, Wang H. Single body-coupled fiber enables chipless textile electronics. Science. 2024;384:74–81.

    Tools

    Get Citation

    Copy Citation Text

    Chao-Qun Ma, Chao-Hua Xue, Xiao-Jing Guo, Jun Liang, Shiliang Zhang, Li Wan, Hui-Di Wang, Meng-Chen Huang, Yong-Gang Wu, Wei Fan, Chong Hou. Scalable and Sustainable Superhydrophobic Cooling Metacotton[J]. Advanced Fiber Materials, 2025, 7(1): 00472

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 17, 2024

    Accepted: Jul. 22, 2024

    Published Online: Mar. 14, 2025

    The Author Email: Xue Chao-Hua (xuech@sust.edu.cn), Fan Wei (fanwei@xpu.edu.cn), Hou Chong (chong@hust.edu.cn)

    DOI:10.1007/s42765-024-00472-y

    Topics