Laser & Optoelectronics Progress, Volume. 49, Issue 9, 90005(2012)

Review of Frequency Doubling Crystal in High Power CO2 Lasers

Luo Xu*, Feng Chi, Chen Xin, Hui Yongling, Jiang Menghua, Lei Hong, and Li Qiang
Author Affiliations
  • [in Chinese]
  • show less
    References(45)

    [1] [1] Irina T. Sorokina, Konstantin L. Vodopyanov. Solid-State Mid-Infrared Laser Sources[M]. Berlin: Springer, 2003. 1~3

    [4] [4] Igor V. Adamovich, Matthew Goshe, Walter R. Lempert et al.. Continuous wave, electrically excited, carbon monoxide laser operating on first overtone infrared bands: 2.5~4.0 microns, kinetic modeling and design[C]. SPIE, 2004, 5448: 322~343

    [5] [5] Yu Qingxu, Han Ruiping, Song Changlie et al.. Computation of small signal gain coefficients for Δν=2 stimulated emission in CO lasers[J]. J. Optoelectronics Laser, 2001, 12(1): 10~13

    [6] [6] N. Bandyopadhyay, B. Gokden, A. Myzaferi et al.. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ 3.76 μm[J]. Appl. Phys. Lett., 2010, 97(13): 131117

    [7] [7] Shigeki Tokita, Masanao Murakami, Seiji Shimizu et al.. Liquid-cooled 24 W mid-infrared ErZBLAN fiber laser[J]. Opt. Lett., 2009, 34(20): 3062~3064

    [9] [9] Peter G. Schunemann. Advances in mid-IR materials[C]. CLEO, 2007, CThL3

    [10] [10] W. B. Gandrud, R. L. Abrarns. Reduction in SHG efficiency in tellurium by photo-induced carriers[C]. 1970 International Electron Devices Meeting, 1970, 16: 94

    [11] [11] R. C. Eckardt, Y. X. Fan, R. L. Byer et al.. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

    [12] [12] L. Isaenko, P. Krinitsin, V. Vedenyapin et al.. LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR[J]. Crystal Growth & Design, 2005, 5(4): 1325~1329

    [13] [13] D. R. Suhre, L. H. Taylor. Six-watt mid-infrared laser using harmonic generation with Tl3AsSe3[J]. Appl. Phys. B, 1996, 63(3): 225~228

    [14] [14] David N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey[M]. Wang Jiyang Transl.. Beijing: Higher Education Press, 2009. 91~107, 243~255, 309~323, 437~456

    [15] [15] T. Skauli, K. L. Vodopyanov, T. J. Pinguet et al.. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Opt. Lett., 2002, 27(8): 628~630

    [16] [16] Yuri M. Andreev, Pavel P. Geikoa, V. Valeri et al.. Parametric frequency converters with LiInSe2, AgGaGeS4, HgGa2S4 and Hg0.65Cd0.35Ga2S4 crystals[C]. SPIE, 2003, 5027: 120~127

    [17] [17] Huang Jinzhe, Ren Deming, Hu Xiaoyong et al.. Nonlinear optical properties of mixed Cd0.35Hg0.65Ga2S4 crystal[J]. Acta Physica Sinica, 2004, 53(11): 3761~3765

    [18] [18] V. V. Badikov, V. I. Chatterjee, P. K. Datta et al.. Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal[J]. Appl. Phys. Lett., 1993, 63(10): 1316~1318

    [19] [19] Michael M. Tilleman. Optimal frequency doubling of a transferred-electron amplifier CO2 laser[J]. Opt. Engng., 2000, 39(3): 758~762

    [20] [20] L. A. Eyres, P. J. Tourreau, T. J. Pinguet et al.. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion[J]. Appl. Phys. Lett., 2001, 79(7): 904~906

    [21] [21] S. Das, C. Ghosh, S. Gangopadhyay. A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals[J]. Infrared Physics & Technology, 2007, 51(1): 9~12

    [22] [22] Deming Ren, Jinzhe Huang, Xiaoyong Hu et al.. Efficient CO2 frequency doubling with Hg1-xCdxGa2S4[C]. SPIE, 2004, 5397: 205~211

    [23] [23] Zhu Shifu, Li Zhenghui, Zhao Beijun et al.. Crystal growth of silver selenogallate and application[J]. J. Synthetic Crystals, 1993, 22(3): 296~299

    [24] [24] Wu Haixin, Ni Youbao, Geng Lei et al.. Investigation of infrared nonlinear crystal material ZnGeP2[J]. J. Synthetic Crystals, 2007, 36(3): 507~511

    [25] [25] F. Rotermund, V. Petrov. Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Crforsterite regenerative amplifier[J]. Opt. Lett., 2000, 25(10): 746~748

    [26] [26] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

    [27] [27] D. E. Thompson, J. D. McMullen, D. B. Anderson. Second-harmonic generation in GaAs "stack of plates" using high-power CO2 laser radiation[J]. Appl. Phys. Lett., 1976, 29(2): 113~115

    [28] [28] L. Becouarn, B. Gerard, M. Brévignon et al.. Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy[J]. Electron. Lett.,1998, 34(25): 2409~2410

    [29] [29] Leonel P. Gonzalez, Derek C. Upchurch, Peter G. Schunemann et al.. Continuous-wave second harmonic generation of a tunable CO2 laser in orientation-patterned GaAs[C].QELS, 2011, JThB74

    [30] [30] Walter C. Hurlbut, Vladimir G. Kozlova, Konstantin Vodopyanov. THz-wave generation inside a high-finesse ring-cavity OPO pumped by a fiber laser[C]. SPIE, 2011, 7582: 75820Z

    [31] [31] L. Gordon, G. L. Woods, R. C. Eckardt et al.. Diffusion-bonded stacked GaAs for quasi-phase-matched second harmonic generation of a carbon dioxide laser[J]. Electron. Lett., 1993, 29(22): 1942~1944

    [32] [32] D. Zheng, L. A. Gordon, Y. S. Wu et al.. Diffusion bonding of GaAs wafers for nonlinear optics applications[J]. J. Electrochem. Soc., 1997, 144(4): 1439~1441

    [33] [33] K. L. Vodopyanov. Terahertz-wave generation with periodically inverted gallium arsenide[J]. Laser Physics, 2009, 19(2): 305~321

    [34] [34] Brian J. Perrett, Paul D. Mason, Pamela A. Webber et al.. Optical parametric amplification of mid-infrared radiation using multi-layer glass-bonded QPM GaAs crystals[C]. SPIE, 2007, 6455: 64550A

    [35] [35] N. Razek, K. Otte, T. Chasse et al.. GaAs surface cleaning by low energy hydrogen ion beam treatment[J]. J. Vac. Sci. Technol., 2002, 20(4): 1492~1497

    [36] [36] R. L. Byer, M. M. Choy, R. L. Herbst et al.. Second harmonic generation and infrared mixing in AgGaSe2[J]. Appl. Phys. Lett., 1974, 24(2): 65~68

    [37] [37] R. C. Eckardt, Y. X. Fan, J. Van der Laan. Efficient second harmonic generation of 10-μm radiation in AgGaSe2[J]. Appl. Phys. Lett., 1985, 47(8): 786~788

    [38] [38] Cheng Ganchao, Zhang Mingyue, Yang Lin et al.. Frequency doubling of tunable TEA CO2 laser radiation in AgGaSe2[J]. Chinese J. Quantum Electronics, 1997, 14(2): 166~169

    [39] [39] David A. Russell, Reinhard Ebert. Efficient generation and heterodyne detection of 4.75 μm light with second-harmonic generation[J]. Appl. Opt., 1993, 32(33): 6638~6644

    [40] [40] Yu M. Andreev, V. Yu. Baranov, V. G. Voevodin et al.. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J]. Sov. J. Quantum Electron., 1987, 17(11): 1435~1436

    [41] [41] D. J. Li, J. Guo, G. L. Yang et al.. High power 4.65 μm single-wavelength laser by second-harmonic generation of pulsed TEA CO2 laser in AgGaSe2 and ZnGeP2[J]. Laser Physics, 2012, 22(4): 725~729

    [42] [42] G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev et al.. Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal[J]. Sov. J. Quantum Electron., 1989, 19(4): 494~498

    [43] [43] Andrew Zakel, James L. Blackshire, Peter G. Schunemann et al.. Temperature and pulse-duration dependence of second-harmonic generation in CdGeAs2[J]. Appl. Opt., 2002, 41(12): 2299~2303

    [44] [44] K. Kato, E. Takaoka, N. Umemura. High efficiency 90° phase matched SHG at 5.2955 μm in AgGaxInxSe2[C]. CLEO, 2002, CTuM14

    [45] [45] E. Lallier, M. Brevignon, J. Lehoux. Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal[J]. Opt. Lett., 1998, 23(19): 1511~1513

    Tools

    Get Citation

    Copy Citation Text

    Luo Xu, Feng Chi, Chen Xin, Hui Yongling, Jiang Menghua, Lei Hong, Li Qiang. Review of Frequency Doubling Crystal in High Power CO2 Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(9): 90005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 16, 2012

    Accepted: --

    Published Online: Jun. 27, 2012

    The Author Email: Xu Luo (luoxu@emails.bjut.edu.cn)

    DOI:10.3788/lop49.090005

    Topics