Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 4, 365(2024)

Graphene terahertz metasurfaces for dynamic manipulation of special beams

LU Jinliang1...2, WANG Xufeng1,2, WANG Dongjie1,2, and HE Xunjun12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi:10.1109/22.989974.

    [2] [2] MANJAPPA M, SINGH R. Materials for terahertz optical science and technology[J]. Advanced Optical Materials, 2020, 8(3):1901984. doi:10.1002/adom.201901984.

    [3] [3] YANG Yihao, YAMAGAMI Y, YU Xiongbin, et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020,14(7):446-451. doi:10.1038/s41566-020-0618-9.

    [4] [4] DENG Wentao, CHEN Liao, ZHANG Hongqi, et al. On-chip polarization-and frequency-division demultiplexing for multidimensional terahertz communication[J]. Laser & Photonics Reviews, 2022,16(10):2200136. doi:10.1002/lpor.202200136.

    [5] [5] PENG Yan,HUANG Jieli,LUO Jie,et al. Three-step one-way model in terahertz biomedical detection[J]. PhotoniX, 2021,2(1):12. doi:10.1186/s43074-021-00034-0.

    [6] [6] YANG Xiang, ZHAO Xiang, YANG Ke, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016,34(10):810-824. doi:10.1016/j.tibtech.2016.04.008.

    [7] [7] MA Jianjun, SHRESTHA R,ADELBERG J, et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 2018, 563(7729):89-93. doi:10.1038/s41586-018-0609-x.

    [8] [8] AFSAH-HEJRI L,AKBARI E,TOUDESHKI A,et al. Terahertz spectroscopy and imaging: a review on agricultural applications[J].Computers and Electronics in Agriculture, 2020(177):105628. doi:10.1016/j.compag.2020.105628.

    [9] [9] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi,1968,10(4):509-514. doi:10.1070/PU1968v010n04ABEH003699.

    [10] [10] PENDRY J B,HOLDEN A J,STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996,76(25):4773-4776. doi:10.1103/PhysRevLett.76.4773.

    [11] [11] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999,47(11):2075-2084. doi:10.1109/22.798002.

    [12] [12] ZHU Shining,ZHANG Xiang. Metamaterials:artificial materials beyond nature[J]. National Science Review, 2018,5(2):131. doi:10.1093/nsr/nwy026.

    [13] [13] SILALAHI H M, CHIANG W F, SHIH Y H, et al. Folding metamaterials with extremely strong electromagnetic resonance[J].Photonics Research, 2022,10(9):2215-2222. doi:10.1364/PRJ.465746.

    [14] [14] KARVOUNIS A,GHOLIPOUR B,MACDONALD K F,et al. Photonic metamaterials:giant electro-optical effect through electrostrictionin a nanomechanical metamaterial[J]. Advanced Materials, 2019,31(1):1970001. doi: 10.1002/adma.201970001.

    [15] [15] STAV T, FAERMAN A,MAGUID E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018,361(6407):1101-1104. doi:10.1126/science.aat9042.

    [16] [16] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011,334(6054):333-337. doi:10.1126/science.1210713.

    [17] [17] CHEBEN P, HALIR R, SCHMID J H, et al. Subwavelength integrated photonics[J]. Nature, 2018, 560(7720): 565-572. doi:10.1038/s41586-018-0421-7.

    [18] [18] ZHANG Xueqian, TIAN Zhen, YUE Weisheng, et al. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013,25(33):4567-4572. doi:10.1002/adma.201204850.

    [19] [19] WEI Zeyong,CAO Yang,SU Xiaopeng, et al. Highly efficient beam steering with a transparent metasurface[J]. Optics Express,2013,21(9):10739-10745. doi:10.1364/OE.21.010739.

    [20] [20] JEON D,SHIN K,MOON S W,et al. Recent advancements of metalenses for functional imaging[J]. Nano Convergence, 2023,10(1):24. doi:10.1186/s40580-023-00372-8.

    [21] [21] JIANG Qiang, LIU Jianghong, LI Junyi, et al. Multiwavelength achromatic metalens in visible by inverse design[J]. Advanced Optical Materials, 2023,11(15):2300077. doi:10.1002/adom.202300077.

    [22] [22] SONG Qinghua, LIU Xingsi, QIU Chengwei, et al. Vectorial metasurface holography[J]. Applied Physics Reviews, 2022, 9(1):011311. doi:10.1063/5.0078610.

    [23] [23] YANG Jiazhi, ZHAO Ruizhe, MENG Zhe, et al. Quantum metasurface holography[J]. Photonics Research, 2022, 10(11): 2607-2613. doi:10.1364/PRJ.470537.

    [24] [24] YANG Hui,HE Peng,OU Kai,et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J].Light,Science & Applications, 2023,12(1):79. doi:10.1038/s41377-023-01125-2.

    [25] [25] ZHOU Hongqiang,LI Xin,XU Zhentao, et al. Correlated triple hybrid amplitude and phase holographic encryption based on a metasurface[J]. Photonics Research, 2022,10(3):678-686. doi:10.1364/PRJ.443063.

    [26] [26] SO S, KIM J, BADLOE T, et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces[J].Advanced Materials, 2023,35(17):2208520. doi:10.1002/adma.202208520.

    [27] [27] KIM Y,WU P C,SOKHOYAN R,et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J].Nano Letters, 2019,19(6):3961-3968. doi:10.1021/acs.nanolett.9b01246.

    [28] [28] BOYCE A M, STEWART J W,AVILA J, et al. Actively tunable metasurfaces via plasmonic nanogap cavities with sub-10-nm VO2 films[J]. Nano Letters, 2022,22(9):3525-3531. doi:10.1021/acs.nanolett.1c04175.

    [29] [29] PARK J,KIM S J,LANDREMAN P,et al. An over-coupled phase-change metasurface for efficient reflection phase modulation[J].Advanced Optical Materials, 2020,8(20):2000745. doi:10.1002/adom.202000745.

    [30] [30] ABDOLLAHRAMEZANI S,TAGHINEJAD H,FAN Tianren,et al. Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture[J]. Nanophotonics, 2022,11(17):3883-3893. doi:10.1515/nanoph-2022-0271.

    [31] [31] LIU Shuo, ZHANG Lei, YANG Quanlong, et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies[J]. Advanced Optical Materials, 2016,4(12):1965-1973. doi:10.1002/adom.201600471.

    [32] [32] CAI Ziqiang,LIU Yongmin. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J].Advanced Optical Materials, 2022,10(6):2102135. doi:10.1002/adom.202102135.

    [33] [33] LI Qingge, ZHANG Jin, RUKHLENKO I D, et al. Graphene-enabled metasurface with independent amplitude and frequency controls in orthogonal polarization channels[J]. Carbon, 2023(206):260-267. doi:10.1016/j.carbon.2023.02.050.

    Tools

    Get Citation

    Copy Citation Text

    LU Jinliang, WANG Xufeng, WANG Dongjie, HE Xunjun. Graphene terahertz metasurfaces for dynamic manipulation of special beams[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(4): 365

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 1, 2023

    Accepted: --

    Published Online: Aug. 21, 2024

    The Author Email: Xunjun HE (hexunjun@hrbust.edu.cn)

    DOI:10.11805/tkyda2023399

    Topics