Infrared and Laser Engineering, Volume. 30, Issue 6, 457(2001)
High-power laser modeling: flattened Gaussian beams
[2] [2] Gori F. Flattened Gaussian beams[J]. Opt. Commun. , 1994, 107:335-341. ;;[3] Bagini V, Borghi R, Gori F, et al. Propagation of axially symmetric flatted Gaussian beams[J]. J. Opt. Soc. Am. , 1996, A 13:1385-1394.
[3] [3] Amarande S A. Beam propagation factor and kurtosis parameter of flattened Gaussian beams[J]. Opt. Commun. , 1996, 129: 311 317.
[4] [4] Sheppard C J R, Saghafi S. Flattened light beams[J]. Opt. Commun. , 1996, 132:144-152.
[5] [5] Santarsiero M, Aiello D, Borghi R, et al. Focusing of axially symmetric flattened Gaussian beams[J]. J. Mod. Opt. , 1997, 44:633-650.
[7] [7] Lü B, Luo S, Zhang B. Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCDsystem with and without aperture[J]. Opt. Commun. , 1999, 164:1-6.
[8] [8] Wen J J, Breazeale M A. A diffraction beam field expressed as the superposition of Gaussian Beams[J]. J. Acoust. Soc. Am. , 1988, 83:1752-1756.
[9] [9] Lü B, Luo S, Ji X. A further comparative study of flattened Gaussian beams and super-Gaussian beams[J]. J. Mod. Opt. , 2001, 48:371-377.
[10] [10] Santarsiero M, Borghi R. Correspondence between super-Gaussian and flattened Gaussian beams. J. Opt. Soc. Am. :A, 1999, 16:188-190.
[11] [11] Lü B, Zhang B, Luo S. Far-field distribution, M2-factor, and propagation of flattened Gaussian beams[J]. Appl. Opt. , 1999, 20:4581-4584.
[12] [12] Lü B, Luo S, Zhang B. Propagation of three-dimensional flattened Gaussian beams[J]. J. Mod. Opt. , 1999, 46:1753-1762.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. High-power laser modeling: flattened Gaussian beams[J]. Infrared and Laser Engineering, 2001, 30(6): 457