Nano-Micro Letters, Volume. 16, Issue 1, 132(2024)

Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording

Yuting Xiang1,7,8、†, Keda Shi4、†, Ying Li2、†, Jiajin Xue3、†, Zhicheng Tong5, Huiming Li5, Zhongjun Li7,8、*, Chong Teng5、**, Jiaru Fang6、***, and Ning Hu1,3、****
Author Affiliations
  • 1Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, People’s Republic of China
  • 2School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People’s Republic of China
  • 3General Surgery Department, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310052, People’s Republic of China
  • 4Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People’s Republic of China
  • 5Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322005, People’s Republic of China
  • 6School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
  • 7Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523059, People’s Republic of China
  • 8Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People’s Republic of China
  • show less
    References(154)

    [7] [7] A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis et al., European society of cardiology: Cardiovascular disease statistics 2017. Oxford University Press, Oxford. (2018)

    [8] [8] Correction to: heart disease and stroke statistics-2023 update: a report from the American heart association. Circulation 148, e4 (2023).

    [9] [9] G. Vorobiof, C. Silverstein, Non-invasive cardiac imaging for evaluation of cardiotoxicity in cancer patients-early detection and follow-up. SA Heart (2017).

    [19] [19] B. Hille, Ion channels of excitable membranes sunderland. Sinauer Associates Inc. (2001)

    [20] [20] A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology; 2003)

    [21] [21] D. C. Sigg, P. A. Iaizzo, Y. F. Xiao, B. He. Electrophysiology of single cardiomyocytes: Patch clamp and other recording methods. (Chapter 16), 329–348 (2010).

    [23] [23] B. Amuzescu, S. Frech, K. Lin, J. Eisfeld, J. Kudolo et al., Electrophysiology Characterization of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Using Automated Patch-clamp. (2015)

    [24] [24] A. Marques-Smith, J.P. Neto, G. Lopes, J. Nogueira, L. Calcaterra et al., Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRxiv (2018).

    [27] [27] L.N. Kahyaoglu, R. Madangopal, M. Stensberg, Rickus J.L, Light-directed functionalization methods for high-resolution optical fiber based biosensors. SPIE Sensing Technology + Applications. Proc SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII Baltimore, MD, USA 9486, 9–18 (2015).

    [43] [43] S. Asgarifar, H. Gomes, A. Mestre, P.M. C. Inácio, J. Bragança et al., in Electrochemically Gated Graphene Field-effect Transistor for Extracellular Cell Signal Recording. ed. by (2016), pp. 558–564.

    [46] [46] H. Gao, F. Yang, K. Sattari, X. Du, T. Fu et al., Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. Sci. Adv. 8, eabn2485 (2022).

    [64] [64] Y. Fang, Y. Jiang, H. Acaron Ledesma, J. Yi, X. Gao et al., Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487–4492 (2018).

    [79] [79] S.J. Luck, An introduction to the event-related potential technique. Sveučilište u Rijeci. (2005)

    [80] [80] S. Cabrini, Sub-10-nm three-dimensional plasmonic probes and sensors. 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai, China. IEEE, (2016). p 836

    [81] [81] R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012).

    [82] [82] T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018).

    [89] [89] T. Feuk, On the transparency of the stroma in the mammalian Cornea. IEEE Trans. Biomed. Eng. BME-17, 186–190 (1970).

    [99] [99] J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 554–557 (1997).

    [107] [107] Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt et al., Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 1520–1526 (2009).

    [112] [112] L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A.M. Ionescu, Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: fabrication, Experiments and Unified Analog Predictive Modeling. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020), 35.2.1–35.2.4.

    [114] [114] A.K. Geim, D. Jiang, E.H. Hill, F. Schedin, K.S. Novoselov et al., Detection of individual gas molecules absorbed on graphene. arXiv e-prints. (2006)

    [119] [119] B.M. Blaschke, M. Lottner, S. Drieschner, A.B. Calia, K. Stoiber et al., Flexible graphene transistors for recording cell action potentials. 2D Mater. 3, 025007 (2016).

    [120] [120] L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert et al., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049, 4968 (2011).

    [127] [127] D.M. Bers, S. Despa, Cardiac excitation–contraction coupling. Encyclopedia of Biological Chemistry. Amsterdam: Elsevier, (2013), 379–383.

    [132] [132] E. Carmeliet, J. Vereecke, Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 313, 300–315 (1969).

    [133] [133] C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991).

    [142] [142] F. Veliev, A. Cresti, D. Kalita, A. Bourrier, T. Belloir et al., Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater. 5, 045020 (2018).

    Tools

    Get Citation

    Copy Citation Text

    Yuting Xiang, Keda Shi, Ying Li, Jiajin Xue, Zhicheng Tong, Huiming Li, Zhongjun Li, Chong Teng, Jiaru Fang, Ning Hu. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording[J]. Nano-Micro Letters, 2024, 16(1): 132

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 1, 2023

    Accepted: Dec. 28, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Li Zhongjun (Zhongjun@gdmu.edu.cn), Teng Chong (tengchong1984@zju.edu.cn), Fang Jiaru (fangir9@mail2.sysu.edu.cn), Hu Ning (huning@zju.edu.cn)

    DOI:10.1007/s40820-024-01336-1

    Topics