Opto-Electronic Engineering, Volume. 51, Issue 11, 240163-1(2024)

Surface characterization using Zernike polynomials

Jingyuan Liang1... Xiwen Li1, Chenghu Ke2, and Xizheng Ke13,* |Show fewer author(s)
Author Affiliations
  • 1School of Automation and Information Engineering, Xi'an University of Technology, Xi’an, Shaanxi 710048, China
  • 2School of Information Engineering, Xi’an University, Xi’an, Shaanxi 710048, China
  • 3Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi’an, Shaanxi 710048, China
  • show less
    References(61)

    [1] T Yang, Y Z Duan, D W Cheng et al. Freeform imaging optical system design: theories, development, and applications. Acta Opt Sin, 41, 0108001(2021).

    [2] D W Cheng, H L Chen, Y T Wang et al. Mathematical description and design methods of complex optical surfaces. Acta Opt Sin, 43, 0822008(2023).

    [3] K Niu, C Tian. Zernike polynomials and their applications. J Opt, 24, 123001(2022).

    [4] H F Yang, Z F Jiang. Research of Zernike modal wavefront reconstruction of 19-element Hartmann-Shack wavefront sensor. Laser Technol, 29, 484-487(2005).

    [5] C Wang. Research on characterization function and application of free-form surface(2014).

    [6] J F Ye, Z S Gao, X L Liu et al. Freeform surfaces reconstruction based on Zernike polynomials and radial basis function. Acta Opt Sin, 34, 0822003(2014).

    [7] T Yang, Y D Wang, X Lü et al. Design of Imaging and display systems combining freeform optics and holographic optical elements. Acta Opt Sin, 44, 0900001(2024).

    [8] C F Lang. Studies on constraints of optimal design and manufacturing of Q-Type freeform surface(2022).

    [9] G W Forbes. Robust and fast computation for the polynomials of optics. Opt Express, 18, 13851-13862(2010).

    [10] J F Ye. Research on the method and technique for characterizing freeform optical surface(2016).

    [11] V N Mahajan, M Aftab. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Appl Opt, 49, 6489-6501(2010).

    [12] I Kaya, K P Thompson, J P Rolland. Edge clustered fitting grids for φ-polynomial characterization of freeform optical surfaces. Opt Express, 19, 26962-26974(2011).

    [13] M V Svechnikov, N I Chkhalo, M N Toropov et al. Resolving capacity of the circular Zernike polynomials. Opt Express, 23, 14677-14694(2015).

    [14] V N Mahajan. Zernike annular polynomials and optical aberrations of systems with annular pupils. Appl Opt, 33, 8125-8127(1994).

    [15] V N Mahajan, G M Dai. Orthonormal polynomials for hexagonal pupils. Opt Lett, 31, 2462-2464(2006).

    [16] V N Mahajan, G M Dai. Orthonormal polynomials in wavefront analysis: analytical solution. J Opt Soc Am A, 24, 2994-3016(2007).

    [17] G M Dai, V N Mahajan. Orthonormal polynomials in wavefront analysis: error analysis. Appl Opt, 47, 3433-3445(2008).

    [18] C Ferreira, J L López, R Navarro et al. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces. Opt Express, 24, 5448-5462(2016).

    [20] I Area, D K Dimitrov, E Godoy. Recursive computation of generalised Zernike polynomials. J Comput Appl Math, 312, 58-64(2017).

    [21] M Ares, S Royo. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction. Appl Opt, 45, 6954-6964(2006).

    [22] I Kaya, K P Thompson, J P Rolland. Comparative assessment of freeform polynomials as optical surface descriptions. Opt Express, 20, 22683-22691(2012).

    [23] K Rahbar, K Faez, E A Kakhki. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. J Opt Soc Am A, 30, 1988-1993(2013).

    [24] J P Trevino, J E Gómez‐Correa, D R Iskander et al. Zernike vs. Bessel circular functions in visual optics. Ophthalmic Physiol Opt, 33, 394-402(2013).

    [25] I Badar, C Hellmann, F Wyrowski. Wavefront phase representation by Zernike and spline models: a comparison. J Opt Soc Am A, 38, 1178-1186(2021).

    [26] T W Raasch, L J Su, A Yi. Whole-surface characterization of progressive addition lenses. Optom Vis Sci, 88, E217-E226(2011).

    [27] T V Ivanova, D S Zavgorodniĭ. Zernike-polynomial description of the deformation of a known surface profile with a noncircularly symmetric shape. J Opt Technol, 88, 8-13(2021).

    [28] P Omidi, A Cayless, A Langenbucher. Evaluation of optimal Zernike radial degree for representing corneal surfaces. PLoS One, 17, e0269119(2022).

    [29] G Puentes, F Minotti. Spectral characterization of optical aberrations in fluidic lenses. Front Phys, 11, 1299393(2024).

    [30] X Y Li, W H Jiang. Modal description of wavefront aberration in non-circle apertures. Chin J Lasers, B11, 259-266(2002).

    [31] Q F Wang, D W Cheng, Y T Wang. Description of free-form optical curved surface using two-variable orthogonal polynomials. Acta Opt Sin, 32, 0922002(2012).

    [32] M Y Li, D H Li, Q H Wang et al. Wavefront reconstruction with orthonormal polynomials in a Square Area. Chin J Lasers, 39, 1108011(2012).

    [33] Q Zhao, Y Wang, P Wang et al. Construction method of non-circular pupil Zernike orthogonal basis in wavefront reconstruction. Opt Tech, 43, 228-233(2017).

    [34] J Z Yan, F Lei, B F Zhou et al. Algorithms for wavefront fitting using Zernike polynomial. Opt Precis Eng, 7, 119-128(1999).

    [35] W D Mo. The reseach into the method to fit interferogram with Zernike polynomials. High Speed Photog Photonics, 20, 389-396(1991).

    [36] W D Mo. The principle of fitting Interferogram with Zernike polynomials. J Air Force Eng Univ (Nat Sci Ed), 3, 35-38(2002).

    [37] W Zhang, J F Liu, F N Long et al. Study on wavefront fitting using Zernike polynomials. Opt Tech, 31, 675-678(2005).

    [38] X Z Sun, X Y Su, H L Jing. The influence of sampling points on the precision of curved surface fitting based on Zernike polynomials. Opt Instrum, 30, 6-10(2008).

    [39] S L Xie. Sampling point number in curved surface fitting with Zernike polynomials. J Appl Opt, 31, 943-949(2010).

    [40] J Feng, Y Bai, T W Xing. Fitting accuracy of wavefront using Zernike polynomials. Electro-Opt Technol Appl, 26, 31-34(2011).

    [41] L X Guo, J J Wei, P Tang. Fitting simulation and precision of mirror surface with Zernike circular polynomial. Opt Optoelectron Technol, 16, 56-62(2018).

    [42] L Han, A L Tian, F M Nie et al. Algorithm for three-dimensional surface reconstruction of fringe reflection using Zernike polynomial. J Xi'an Technol Univ, 39, 137-144(2019).

    [43] X Y Wei, X Yu. An optical wavefront seuing and reconstruction method based on Zernike polynomials. Acta Opt Sin, 14, 718-723(1994).

    [44] Q Zhang, W H Jiang, B Xu. Reconstruction of turbulent optical wavefront realized by Zernike polynomial. Opto-Electron Eng, 25, 15-19(1998).

    [45] Z F Luo, H X Chen, L Ding. Wavefront measurement and reconstruction of small phase-distortion on laser beam. Laser J, 27, 35-36(2006).

    [46] H Zhang, J D Lu, R Liu et al. Design of uniform square spot Lens based on smooth optimization of Zernike polynomials. Laser Optoelectron Prog, 55, 102202(2018).

    [47] D Q Yang, Y H Tao, G L Zhao et al. Rapid simulation of atmospheric turbulence degradation images based on neural networks. Spacecr Recovery Remote Sens, 44, 57-67(2023).

    [48] W D Mo. Error and precision evaluation of a system for Inspecting surface of optical plane. Acta Opt Sin, 23, 879-883(2003).

    [49] J W Yang, Q L Huang, Y M Han. Application and simulation in fitting optical surface with Zernike polynomial. Spacecr Recovery Remote Sens, 31, 49-55(2010).

    [50] Z H Pang, X W Fan, Z Ma et al. Free-form optical elements corrected aberrations of optical system. Acta Opt Sin, 36, 0522001(2016).

    [51] S Guan, C Wang, S F Tong et al. Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication. Infrared Laser Eng, 46, 1205002(2017).

    [52] B B Xiang, C S Wang, P Y Lian. Effect of surface error distribution and aberration on electromagnetic performance of a reflector antenna. Int J Antennas Propagation, 2019, 5062545(2019).

    [53] Y C Shi, H D Yan, P Gong et al. Topology optimization design method for supporting structures of optical reflective mirrors based on Zernike coefficient optimization model. Acta Photonica Sin, 49, 0622001(2020).

    [54] T Zhou, Q Hao, Y Hu et al. An optimization method of deformable mirror shape design for freeform surface partial compensation interferometry. Opt Tech, 47, 257-264(2021).

    [55] J H Yan, Z J Hu, D Y Zhu et al. Design of compact off-axis three-mirror afocal system based on freeform surface. Acta Photonica Sin, 51, 0511002(2022).

    [56] B F Xie, X Zhao, S S Tao et al. Application of freeform surface in aberration compensation of femtosecond laser filamentation system. Acta Opt Sin, 43, 0822020(2023).

    [57] J Z Han, S J Zhao, A W Feng et al. Design of compact and broadband imaging spectrometer based on free-form surface. Acta Opt Sin, 43, 1422002(2023).

    [58] Q Zhang, B D Lü, W H Jiang. Zernike model wavefront reconstruction for annular field. High Power Laser Part Beams, 12, 306-310(2000).

    [59] Q T Wang, S F Tong, Y H Xu. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials. Infrared Laser Eng, 42, 1907-1911(2013).

    [60] J L Wu, X Z Ke. Adaptive optics correction of wavefront sensorless. Laser Optoelectron Prog, 55, 030103(2018).

    [61] H M Zhang, X Y Li. Numerical simulation of wavefront phase screen distorted by atmospheric turbulence. Opto-Electron Eng, 33, 14-19(2006).

    Tools

    Get Citation

    Copy Citation Text

    Jingyuan Liang, Xiwen Li, Chenghu Ke, Xizheng Ke. Surface characterization using Zernike polynomials[J]. Opto-Electronic Engineering, 2024, 51(11): 240163-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 12, 2024

    Accepted: Oct. 26, 2024

    Published Online: Jan. 24, 2025

    The Author Email: Ke Xizheng (柯熙政)

    DOI:10.12086/oee.2024.240163

    Topics