Matter and Radiation at Extremes, Volume. 6, Issue 3, 034001(2021)

XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes

F. B. Rosmej1,2,3,4, V. A. Astapenko3, and E. S. Khramov3
Author Affiliations
  • 1Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 2LULI, Ecole Polytechnique, CEA, CNRS, Laboratoire pour l’Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, F-91128 Palaiseau, France
  • 3Moscow Institute of Physics and Technology—MIPT, Institutskii per. 9, Dolgoprudnyi 141700, Russia
  • 4National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow 115409, Russia
  • show less
    References(45)

    [1] W.Ebeling, W.-D.Kraeft, D.Kremp, G.R?pke. Quantum Statistics of Charged Particle Systems(1986).

    [2] S.Ichimaru. Statistical Plasmas Physics Vol. II: Condensed Plasmas(2004).

    [3] R.Drake. High-Energy-Density Physics(2006).

    [4] M. P.Desjarlais, F.Graziani, R.Redmer, S. B.Trickey. Frontiers and Challenges in Warm Dense Matter(2014).

    [5] M.Harmand, S.Mazevet, A.Ravasio et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Phys. Rev. B, 92, 024108(2015).

    [6] F.Dorchies, F.Festa, V.Recoules et al. X-ray absorption K-edge as a diagnostic of the electronic temperature in warm dense aluminum. Phys. Rev. B, 92, 085117(2015).

    [7] W.Kang, S.Zhang, S.Zhao et al. Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an imporved first-principles method. Phys. Rev. B, 93, 115114(2016).

    [8] R.Cheng, Y.Lei, X.Zhou et al. Warm dense matter research at HIAF. Matter Radiat. Extremes, 3, 85(2018).

    [9] H.-K.Chung, R. W.Lee, S. J.Moon et al. Finite temperature dense matter studies on next generation light sources. J. Opt. Soc. Am. B, 20, 770(2003).

    [10] D.Riley. Generation and characterisation of warm dense matter with intense lasers. Plasma Phys. Controlled Fusion, 60, 014033(2017).

    [11] L.Antonelli, D.Batani, O.Renner, M.?míd. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [12] O.Renner, F. B.Rosmej. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extremes, 4, 024201(2019).

    [13] A.Colaitis, O.Renner, M.Smid et al. Characterization of suprathermal electrons inside laser accelerated solid density matter via axially-resolved Kα-emission. Nat. Commun., 10, 4212(2019).

    [14] S.Varro. Free Electron Lasers(2012).

    [18] O.Gorobtsov, N.Kabachnik, U.Lorenz et al. Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs. Phys. Rev. E, 91, 062712(2015).

    [19] F.de Gaufridy, A. G.de la Varga, P.Velarde et al. Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser. High Energy Density Phys., 9, 542(2013).

    [20] S. J.Rose. The effect of a radiation field on exciation and ionisation in non-LTE high energy density plasmas. High Energy Density Phys., 5, 23(2009).

    [21] M. H.Chen, H.-K.Chung, W. L.Morgan et al. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys., 1, 3(2005).

    [22] C.Gao, J.Yuan, J.Zeng. Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations. High Energy Density Phys., 14, 52(2015).

    [23] R.Santra, S.-K.Son, L.Young. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A, 83, 033402(2011).

    [24] O.Peyrusse. Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to x-ray free-electron-laser radiation. Phys. Rev. E, 86, 036403(2012).

    [25] E.Schneidmiller, M.Yurkov. Photon beam properties at the European XFEL. Technical Report No. XFEL.EU TR-2011-006(2011).

    [26] T.Tanaka. Proposal to generate an isolated monocycle x-ray pulse by counteracting the slippage effect in free-electron lasers. Phys. Rev. Lett., 114, 044801(2015).

    [27] Y.Kida, R.Kinjo, T.Tanaka. Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers. Appl. Phys. Lett., 109, 151107(2016).

    [28] G.Geloni, E.Saldin, L.Samoylova et al. Coherence properties of the European XFEL. New J. Phys., 12, 035021(2010).

    [29] S.Roling, L.Samoylova, H.Zacharias et al. Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers. Phys. Rev. Spec. Top.--Accel. Beams, 17, 110705(2014).

    [30] B.Li. X-ray photon temporal diagnostics for the European XFEL. Technical Report No. XFEL.EU TN-2012-002-01(2012).

    [31] Z.Huang, K.-J.Kim. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top.--Accel. Beams, 10, 034801(2007).

    [32] M.Chini, Q.Zhang, K.Zhao et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett., 37, 3891(2012).

    [33] E.Fermi. Über die theorie des stosses zwischen atomen und elektrisch geladenen teilchen. Z. Phys., 29, 35(1924).

    [34] V. A.Astapenko, V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej. Generalized scaling laws for ionization of atomic states by ultra-short electromagnetic pulses. J. Phys. B: At., Mol. Opt. Phys., 49, 025602(2016).

    [35] R. G.Newton. Optical theorem and beyond. Am. J. Phys., 44, 639-642(1976).

    [36] V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms. J. Phys. B: At., Mol. Opt. Phys., 50, 235601(2017).

    [37] J. C.Davis, E. M.Gullikson, B. L.Henke. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92. At. Data Nucl. Data Tables, 54, 181-342(1993).

    [38] W.Becker, Q.Lin, J.Zheng. Subcycle pulsed focused vector beams. Phys. Rev. Lett., 97, 253902(2006).

    [39] V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej, L. A.Vainshtein. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells. Matter Radiat. Extremes, 5, 064202(2020).

    [40] Y.Inubushi, T.Katayama, Y.Obara et al. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser. Appl. Phys. Lett., 103, 131105(2013).

    [41] S.Düsterer, Y.Jiang, T.Pfeifer et al. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett., 35, 3441(2010).

    [43] D.Attwood, E.Gullikson, A.Thompson et al. X-Ray Data Booklet(2009).

    [44] N.Ashcroft, N.Mermin. Solid State Physics, p.16(1976).

    [45] V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej. Plasma Atomic Physics, Springer Series on Atomic, Optical and Plasma Physics(2021).

    Tools

    Get Citation

    Copy Citation Text

    F. B. Rosmej, V. A. Astapenko, E. S. Khramov. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Letters

    Received: Jan. 31, 2021

    Accepted: Feb. 25, 2021

    Published Online: May. 21, 2021

    The Author Email:

    DOI:10.1063/5.0046040

    Topics