Acta Photonica Sinica, Volume. 35, Issue 12, 1850(2006)
Nonlinear Feedback Control in Single-Mode Laser Haken-Lorenz Chaotic System
[1] [1] Morgül . On the stability of delayed feedback controllers for discrete time ystems. Phys Lett (A),2005,335 (1) :31~42
[2] [2] Lü L,Du Z,Luan L. Control of period-doubling bifurcation and chaos in acousto-optical bistable system by the feedback of states. Acta Photonica Sinica,2004,33(11):1401~1404
[3] [3] Lü L,Luan L,Du Z. A valid method of controlling chaos in single-mode laser Haken-Lorenz system. Acta Photonica Sinica,2004,33(4):416~419
[4] [4] Trimper S,Zabrocki K. Delay-controlled reactions. Phys Lett(A),2004,321(4):205~215
[5] [5] Alvarez-Ramirez J,Es pinosa-Paredes G,Puebla H. Chaos control using small-amplitude damping signals. Phys Lett(A),2003,316(3-4) :196~205
[6] [6] Tian Y C,Tade M O,Levyb D. Constrained control of chaos. Ph ys Lett (A),2002,296(2-3) :87~90
[7] [7] Chen L Q. An open-plus-closed-loop control for discrete chaos andhyperchaos. Phys Lett (A),2001,281(5-6) :327~333
[8] [8] Abed E H,Wang H O,Chen R C. Stabilization of period doubing bifurcations and implications for control of chaos. Physica(D),1994,70(1-2) :154~64
[9] [9] Meucci R,Gadomski W,Ciofini M,et al. Experimental control of chaos by means of weak parametric perturbations. Phys Rev(E),1994,49(4) :2528~2531
[10] [10] Pisarchik A N,Chizhevsky V N,Corbalan Ramon,etal.Experimental control of nonlinear dynamics by slow parametric modulation. Phys Rev (E),1997 955(3) :2455~2461
[11] [11] Konishi K,Kokame H,Hirata K. Delayed-feedback control of spatial bifurcations and chaos in open-flow models. Phys Rev (E),2000,62(1) :384~388
[12] [12] Yang L. F,Dolnik M,Zhabotinsky A M,et al.Oscillatory cluster in a model of the photosensitive Belousov-Zhabotinsky reaction system with global feedback. Ph ys Rev (E),2000,62 (5) :6414 ~ 6420
[13] [13] Roy R,Murphy Jr T W,Maier T D,et al. Dynamical control of chaotic laser: experimental stabilization of a globally coupled system. Phys Rev Lett,1992,68 (9):1259~1262
[14] [14] Ott E,Grebogi C,Yorke J A. Cotrolling chaos. PhysRev Lett,1990,64(11):1196~1199
[15] [15] Guemez J,Matias M A. Controlling of chaos in unidimensional map. Phys Lett(A),1993,181(1):29~32
[16] [16] Pyragas K. Continuous control of chao by selfcontrolling feedback. Phys Lett (A),1992,170 (6) :421~428
[17] [17] Schneider F W,Blittersdorf R,Forster A,et. al.Continuous control of chemical chaos by time delayed feedback. J Phys Chem,1993,97(47):12244~12248
[18] [18] Mirus K A,Sprott J C. Controlling chaos in a high dimensional system with periodic parametric perturbations. Phys Lett (A),1999,254(5) :275~278
[19] [19] Lü L. Nonlinear dynamics and chaos. Dalian: Dalian publishing house,2000.130~133
[20] [20] Lü L,Lu B Q,Li C R. Theoretical research of chaotic behavior about single mode laser. Opt Tech,1998,24(2):35~43
Get Citation
Copy Citation Text
Lü Lin, Zou Chengye, Zhao Hongyan. Nonlinear Feedback Control in Single-Mode Laser Haken-Lorenz Chaotic System[J]. Acta Photonica Sinica, 2006, 35(12): 1850
Category:
Received: --
Accepted: --
Published Online: Jun. 3, 2010
The Author Email: Lin Lü (lshdg@sina.com.cn)
CSTR:32186.14.