Journal of Synthetic Crystals, Volume. 52, Issue 8, 1422(2023)

Thermoelectric Properties of the Novel Thermoelectric Material Y2Te3 Through Strain Modulation

XIA Yuhong*... YANG Zhenqing, ZHOU Lulu and SHAO Changjin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(42)

    [1] [1] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105.

    [2] [2] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials, 2018, 8(6): 1701797.

    [3] [3] HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355.

    [4] [4] CHANNEGOWDA M, MULLA R, NAGARAJ Y, et al. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity[J]. ACS Applied Energy Materials, 2022, 5(7): 7913-7943.

    [5] [5] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.

    [7] [7] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385-1389.

    [8] [8] LV H Y, LU W J, SHAO D F, et al. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer[J]. Journal of Materials Chemistry C, 2016, 4(20): 4538-4545.

    [9] [9] OUYANG Y L, ZHANG Z W, LI D F, et al. Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance[J]. Annalen Der Physik, 2019, 531(4): 1800437.

    [11] [11] ZHU T S, HE R, GONG S, et al. Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics[J]. Energy & Environmental Science, 2021, 14(6): 3559-3566.

    [12] [12] MAY A F, SINGH D J, SNYDER G J. Influence of band structure on the large thermoelectric performance of lanthanum telluride[J]. Physical Review B, 2009, 79(15): 153101.

    [13] [13] DELAIRE O, MAY A F, MCGUIRE M A, et al. Phonon density of states and heat capacity of La3-xTe4[J]. Physical Review B, 2009, 80(18): 184302.

    [14] [14] CHEIKH D, HOGAN B E, VO T, et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material[J]. Joule, 2018, 2(4): 698-709.

    [15] [15] GOMEZ S J, CHEIKH D, VO T, et al. Synthesis and characterization of vacancy-doped neodymium telluride for thermoelectric applications[J]. Chemistry of Materials, 2019, 31(12): 4460-4468.

    [16] [16] WOOD C, LOCKWOOD A, PARKER J, et al. Thermoelectric properties of lanthanum sulfide[J]. Journal of Applied Physics, 1985, 58(4): 1542-1547.

    [17] [17] HE Z M, YANG M, WANG Z M, et al. Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3[J]. Advanced Composites and Hybrid Materials, 2022, 5(4): 2884-2895.

    [18] [18] CHEIKH D, LEE K, PENG W Y, et al. Thermoelectric properties of scandium sesquitelluride[J]. Materials, 2019, 12(5): 734.

    [19] [19] OCZECHIN A, SRON K, BARRAS A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 42964-42974.

    [20] [20] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride[J]. Advanced Electronic Materials, 2019, 5(6): 1800904.

    [21] [21] TORIYAMA M Y, CHEIKH D, BUX S K, et al. Y2Te3: a new n-type thermoelectric material[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43517-43526.

    [22] [22] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[J]. Chemistry of Materials, 2016, 28(1): 376-384.

    [23] [23] TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[J]. Journal of the American Chemical Society, 2015, 137(15): 5100-5112.

    [24] [24] PICCIONE B, GIANOLA D S. Tunable thermoelectric transport in nanomeshes via elastic strain engineering[J]. Applied Physics Letters, 2015, 106(11): 113101.

    [25] [25] CHANDRA SHEKAR N V, POLVANI D A, MENG J F, et al. Improved thermoelectric properties due to electronic topological transition under high pressure[J]. Physica B: Condensed Matter, 2005, 358(1/2/3/4): 14-18.

    [26] [26] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.

    [27] [27] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

    [28] [28] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.

    [29] [29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [30] [30] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979.

    [31] [31] GORAI P, TOBERER E S, STEVANOVIC' V. Thermoelectricity in transition metal compounds: the role of spin disorder[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31777-31786.

    [32] [32] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509.

    [33] [33] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

    [34] [34] MADSEN G K H, CARRETE J, VERSTRAETE M J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients[J]. Computer Physics Communications, 2018, 231: 140-145.

    [35] [35] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80.

    [36] [36] ZHU X L, LIU P F, XIE G F, et al. Thermoelectric properties of hexagonal M2C3 (M=As, Sb, and Bi) monolayers from first-principles calculations[J]. Nanomaterials, 2019, 9(4): 597.

    [37] [37] KUMAR S, SCHWINGENSCHLGL U. Thermoelectric response of bulk and monolayer MoSe2 and WSe2[J]. Chemistry of Materials, 2015, 27(4): 1278-1284.

    [38] [38] LEE M S, POUDEU F P, MAHANTI S D. Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds[J]. Physical Review B, 2011, 83(8): 085204.

    [39] [39] GUO D L, HU C G, XI Y, et al. Strain effects to optimize thermoelectric properties of doped Bi2O2Se via tran-blaha modified becke-johnson density functional theory[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21597-21602.

    [40] [40] XI J Y, LONG M Q, TANG L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials[J]. Nanoscale, 2012, 4(15): 4348-4369.

    [41] [41] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.

    [42] [42] WANG F Q, GUO Y G, WANG Q A, et al. Exceptional thermoelectric properties of layered GeAs2[J]. Chemistry of Materials, 2017, 29(21): 9300-9307.

    [43] [43] JONSON M, MAHAN G D. Mott’s formula for the thermopower and the Wiedemann-Franz law[J]. Physical Review B, 1980, 21(10): 4223-4229.

    [44] [44] STOJANOVIC N, MAITHRIPALA D H S, BERG J M, et al. Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law[J]. Physical Review B, 2010, 82(7): 075418.

    Tools

    Get Citation

    Copy Citation Text

    XIA Yuhong, YANG Zhenqing, ZHOU Lulu, SHAO Changjin. Thermoelectric Properties of the Novel Thermoelectric Material Y2Te3 Through Strain Modulation[J]. Journal of Synthetic Crystals, 2023, 52(8): 1422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 17, 2023

    Accepted: --

    Published Online: Oct. 28, 2023

    The Author Email: Yuhong XIA (xiayuhong1999@163.con)

    DOI:

    CSTR:32186.14.

    Topics