Journal of Synthetic Crystals, Volume. 49, Issue 9, 1646(2020)

Exploration of n-Type Doping in Two-Dimensional BN Materials∶Calculation of Charged Defects Based on First Principles

LIU Xuefei1... LYU Bing1 and LUO Zijiang2,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(38)

    [1] [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-9.

    [2] [2] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.

    [3] [3] Naseri A, Samadi M, Pourjavadi A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J].Journal of Materials Chemistry A,2017,5(45):23406.

    [4] [4] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J].Chemical Reviews,2016,116(12):7159

    [5] [5] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J].Nature Nanotechnology,2012,7(11):699-712.

    [6] [6] Duan X D, Wang C, Pan A L, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J].Chemical Society Reviews,2015,44(24):8859-8876.

    [7] [7] Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J].Materials Today,2017,20(3):116-130.

    [8] [8] Gao Z B, Zhou Z X, Tománek D. Degenerately doped transition metal decalcomania as ohmic homojunction contacts to transition metal dichalcogenide semiconductors[J].ACS Nano,2019,13(5):5103-5111.

    [9] [9] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D Semiconductor with a high hole mobility[J].ACS Applied Nano Materials,2014,8(4):4033-41.

    [10] [10] Carvalho A, Wang M, Zhu X, et al. Phosphorene: from theory to applications[J].Nature Reviews Materials,2016,1(6):160611-8.

    [11] [11] Singh A K, Zhuang H L, Hennig R G. Ab initio synthesis of single-layer III-V materials[J].Physical Review B,2014,89(24): 2454311-8.

    [12] [12] Zhang Z F, Geng Z H, Cai D Y, et al. Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5 d transition metal atoms: First-principles calculations and molecular orbital analysis[J].Physica E,2015,65(7):24-9.

    [13] [13] Onen A, Kecik D, Durgun E, et al. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids[J].Physical Review B,2016,93(8):0854311-11.

    [14] [14] Kecik D, Onen A, Konuk M, et al. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis[J].Applied Physics Reviews,2018,5(1):0111051-18.

    [15] [15] Al Balushi Z Y, Wang K, Ghosh R K, et al. Two-dimensional gallium nitride realized via graphene encapsulation[J].Nature Materials,2016,15(11):1166-71.

    [16] [16] Liu X F, Luo Z J, Zhou X, et al. Structural, mechanical, and electronic properties of 25 kinds of III-V binary monolayers: A computational study with first-principles calculation[J].Chinese Physics B,2019,28(8):0861051-12.

    [17] [17] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J].Proceedings of The National Academy of Sciences of the United States of America,2005,102(30):10451-3.

    [18] [18] Jin C, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments[J].Physical Review Letters,2009,102(19):1955051-4.

    [19] [19] Turiansky Mark E, Alkauskas Audrius, Bassett Lee C, et al. Dangling bonds in hexagonal boron nitride as single-photon emitters[J].Physical Review Letters,2019,123(12):127401-06.

    [24] [24] Gai Y Q, Tang G. First-principles study of native and extrinsic point defects in cubic boron nitride[J].Physica Scripta,2011,83(4):0456051-6.

    [25] [25] Wang V, Ma N, Mizuseki Hiroshi, et al. First-principles study of intrinsic defect properties in hexagonal BN bilayer and monolayer[J].Solid State Communications,2012,152(9):816-20.

    [26] [26] Huang B, Lee Hoonkyung. Defect and impurity properties of hexagonal boron nitride:a first-principles calculation[J].Physical Review B,2012,86(24):2454061-8.

    [27] [27] Azevedo S, Kaschny J R, De Castilho Caio M C, et al. Corrigendum:theoretical investigation of native defects in a boron nitride monolayer[J].Nanotechnology,2012,23(48):489501-04.

    [28] [28] Mapasha R E, Molepo M P, Andrew R C, et al. Defect charge states in Si doped hexagonal boron-nitride monolayer[J].Journal of Physics: Condensed Matter,2016,28(5):055501-10.

    [29] [29] Freysoldt C, Neugebauer J. First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields[J].Physical Review B,2018,97(20):205425-15.

    [30] [30] Ahmadpour M M R, Ludacka U, Komsa H P, et al. Substitutional Si impurities in monolayer hexagonal boron nitride[J].Applied Physics Letters,2019,115(7):0716041-5.

    [31] [31] Liu X F, Gao Z B, Wang V, et al. Extrapolated defect transition level in two-dimensional materials: the case of charged native point defects in monolayer hexagonal boron nitride[J].ACS Applied Materilas&Interfaces,2020,12(14):17055-61.

    [32] [32] Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids[J].Reviews of Modern Physics,2014,86(1):253-303.

    [33] [33] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-86.

    [34] [34] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-8.

    [35] [35] Blchl P E. Projector augmented-wave method[J].Physical Review B,1994,50(24):17953-79.

    [36] [36] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J].The Journal of Chemical Physics,2006,125(22):224106-12.

    [37] [37] Wang V, Xu N, Liu J C, et al. VASPKIT: a pre- and post-processing program for VASP code[J].https://arxiv.org/abs/1908.08269 (accessed on 25 August 2019),2019.

    [38] [38] Van De Walle Chris G, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides[J].Journal of Applied Physics,2004,95(8):3851-79.

    [39] [39] Naik Mit H, Jain Manish. CoFFEE: corrections for formation energy and eigenvalues for charged defect simulations[J].Computer Physics Communications,2018,226(5):114-26.

    [40] [40] Ong S P, Richards W D, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis[J].Computational Materials Science,2013,68(7):314-9.

    [41] [41] Komsa H P, Pasquarello A. Finite-size supercell correction for charged defects at surfaces and interfaces[J].Physical Review Letters,2013,110(9):0955051-5.

    [42] [42] Komsa H P, Berseneva N, Krasheninnikov A V, et al. Charged point defects in the flatland: accurate formation energy calculations in two-dimensional materials[J].Physical Review X,2014,4(3):0310441-6.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xuefei, LYU Bing, LUO Zijiang. Exploration of n-Type Doping in Two-Dimensional BN Materials∶Calculation of Charged Defects Based on First Principles[J]. Journal of Synthetic Crystals, 2020, 49(9): 1646

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Nov. 11, 2020

    The Author Email: Zijiang LUO (luozijiang@mail.gufe.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics