International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 65501(2024)

An in-situ hybrid laser-induced integrated sensor system with antioxidative copper

Xu Kaichen, Cai Zimo, Luo Huayu, Lin Xingyu, Yang Geng, Xie Haibo, Ko Seung Hwan, and Yang Huayong
References(64)

[1] [1] Chen G W, Mohanty A K and Misra M 2021 Progress in research and applications of polyphenylene sulfide blends and composites with carbons Composites B 209 108553

[2] [2] Oladele I O, Adelani O, Oke S R, Adewumi O A and Akinbowale M K 2023 Sustainable naturally derived plantain fibers/epoxy based composites for structural applications J. Nat. Fibers20 2134264

[3] [3] Hu X J, Huang J C, Wei Y Z, Zhao H Y, Lin S Z, Hu C X, Wang Z, Zhao Z and Zang X N 2022 Laser direct-write sensors on carbon-fiber-reinforced poly-ether-ether-ketone for smart orthopedic implants Adv. Sci.9 2105499

[4] [4] Yu Y H, Zhao G, Song J F and Ding Q J 2019 Mechanical and tribological properties of polyimide composites for reducing weight of ultrasonic motors Key Eng. Mater.799 65–70

[5] [5] Zol S M, Alauddin M S, Said Z, Ghazali M I M, Hao-Ern L, Farid D A M, Zahari N A H, Al-Khadim A H A and Aziz A H A 2023 Description of poly(aryl-ether-ketone) materials (PAEKs), polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) for application as a dental material: a materials science review Polymers15 2170

[6] [6] Wang Y, Qiu L, Luo Y J and Ding R 2021 A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring Struct. Health Monit.20 861–76

[7] [7] Xu K C, Lu Y Y, Yamaguchi T, Arie T, Akita S and Takei K 2019 Highly precise multifunctional thermal management-based flexible sensing sheets ACS Nano13 14348–56

[8] [8] Wang Y, Hu S G, Xiong T, Huang Y A and Qiu L 2022 Recent progress in aircraft smart skin for structural health monitoring Struct. Health Monit.21 2453–80

[9] [9] Xiong W N, Zhu C, Guo D L, Hou C, Yang Z X, Xu Z Y, Qiu L, Yang H, Li K and Huang Y A 2021 Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception Nano Energy90 106550

[10] [10] Xu K C et al 2023 Laser direct writing of flexible thermal flow sensors Nano Lett.23 10317–25

[11] [11] Zhu C, Xu Z Y, Hou C, Lv X D, Jiang S, Ye D and Huang Y A 2024 Flexible, monolithic piezoelectric sensors for large-area structural impact monitoring via MUSIC-assisted machine learning Struct. Health Monit.23 121–36

[12] [12] Mishra R B, El-Atab N, Hussain A M and Hussain M M 2021 Recent progress on flexible capacitive pressure sensors: from design and materials to applications Adv. Mater. Technol.6 2001023

[13] [13] Wu H, Tian Y, Luo H B, Zhu H, Duan Y Q and Huang Y A 2020 Fabrication techniques for curved electronics on arbitrary surfaces Adv. Mater. Technol.5 2000093

[14] [14] Zhao R Q, Guo R, Xu X L and Liu J 2020 A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics ACS Appl. Mater. Interfaces12 36723–30

[15] [15] Yang W W, Zhao W, Li Q S, Li H, Wang Y L, Li Y X and Wang G 2020 Fabrication of smart components by 3D printing and laser-scribing technologies ACS Appl. Mater. Interfaces12 3928–35

[16] [16] Li J, Zhang Y, Wang P R, Wang G Q, Liu Y F, Liu Y N and Li Q S 2021 Selectively metalizable stereolithography resin for three-dimensional DC and high-frequency electronics via hybrid additive manufacturing ACS Appl. Mater. Interfaces13 22891–901

[17] [17] Zheng B J D, Zhao G G, Yan Z, Xie Y C and Lin J 2023 Direct freeform laser fabrication of 3D conformable electronics Adv. Funct. Mater.33 2210084

[18] [18] Goh G L, Zhang H N, Chong T H and Yeong W Y 2021 3D printing of multilayered and multimaterial electronics: a review Adv. Electron. Mater.7 2100445

[19] [19] Park Y G, Yun I, Chung W G, Park W, Lee D H and Park J U 2022 High-resolution 3D printing for electronics Adv. Sci.9 2104623

[20] [20] Wilkinson N J, Smith M A A, Kay R W and Harris R A 2019 A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing Int. J. Adv. Manuf. Technol.105 4599–619

[21] [21] Fisher C, Skolrood L N, Li K, Joshi P C and Aytug T 2023 Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review Adv. Mater. Technol.8 2300030

[22] [22] Huang Y A et al 2021 Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces Int. J. Extreme Manuf.3 045101

[23] [23] Bi S, Wang R Y, Han X, Wang Y, Tan D C, Shi B O, Jiang C M, He Z R and Asare-Yeboah K 2023 Recent progress in electrohydrodynamic jet printing for printed electronics: from 0D to 3D materials Coatings13 1150

[24] [24] Hyun W J, Secor E B, Hersam M C, Frisbie C D and Francis L F 2015 High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics Adv. Mater.27 109–15

[25] [25] He P, Cao J Y, Ding H, Liu C G, Neilson J, Li Z L, Kinloch I A and Derby B 2019 Screen-printing of a highly conductive graphene ink for flexible printed electronics ACS Appl. Mater. Interfaces11 32225–34

[26] [26] Kim K K, Ha I H, Kim M, Choi J, Won P, Jo S and Ko S H 2020 A deep-learned skin sensor decoding the epicentral human motions Nat. Commun.11 2149

[27] [27] Kim K K, Choi J, Kim J H, Nam S and Ko S H 2022 Evolvable skin electronics by in situ and in operando adaptation Adv. Funct. Mater.32 2106329

[28] [28] Song S et al 2023 Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser ACS Nano17 21443–54

[29] [29] Kang B, Han S, Kim J, Ko S and Yang M Y 2011 One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle J. Phys. Chem. C 115 23664–70

[30] [30] Han S, Hong S, Yeo J, Kim D, Kang B, Yang M Y and Ko S H 2015 Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction Adv. Mater.27 6397–403

[31] [31] Kwon J, Cho H, Eom H, Lee H, Suh Y D, Moon H, Shin J, Hong S and Ko S H 2016 Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications ACS Appl. Mater. Interfaces8 11575–82

[32] [32] Suh Y D, Kwon J, Lee J, Lee H, Jeong S, Kim D, Cho H, Yeo J and Ko S H 2016 Maskless fabrication of highly robust, flexible transparent Cu conductor by random crack network assisted Cu nanoparticle patterning and laser sintering Adv. Electron. Mater.2 1600277

[33] [33] Kwon J, Cho H, Suh Y D, Lee J, Lee H, Jung J, Kim D, Lee D, Hong S and Ko S H 2017 Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles Adv. Mater. Technol.2 1600222

[34] [34] Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida H V, Barquinha P, Fortunato E and Martins R 2024 Direct laser writing: from materials synthesis and conversion to electronic device processing Adv. Mater.36 2402014

[35] [35] Joe D J, Kim S, Park J H, Park D Y, Lee H E, Im T H, Choi I, Ruoff R S and Lee K J 2017 Laser–material interactions for flexible applications Adv. Mater.29 1606586

[36] [36] Luo H Y et al 2022 A fully soft, self-powered vibration sensor by laser direct writing Nano Energy103 107803

[37] [37] Cui S Y, Lu Y Y, Kong D P, Luo H Y, Peng L, Yang G, Yang H Y and Xu K C 2023 Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors Opto-Electron. Adv.6 220172

[38] [38] Lu Y Y et al 2024 Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics Nat. Electron.7 51–65

[39] [39] Sun M W, Cui S Y, Wang Z Z, Luo H Y, Yang H Y, Ouyang X P and Xu K C 2024 A laser-engraved wearable gait recognition sensor system for exoskeleton robots Microsyst. Nanoeng.10 50

[40] [40] Han W, Kong L B and Xu M 2022 Advances in selective laser sintering of polymers Int. J. Extreme Manuf.4 042002

[41] [41] Wang W T, Lu L S, Lu X Y, Liang Z B, Tang B and Xie Y X 2022 Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf Bio-Des. Manuf.5 700–13

[42] [42] Yang M L, Yang L Y M, Peng S P, Deng F, Li Y G, Yang Y W and Shuai C J 2023 Laser additive manufacturing of zinc: formation quality, texture, and cell behavior Bio-Des. Manuf.6 103–20

[43] [43] Zhang Y X, Wu D, Zhang Y C, Bian Y C, Wang C W, Li J W, Chu J R and Hu Y L 2023 Femtosecond laser direct writing of functional stimulus-responsive structures and applications Int. J. Extreme Manuf.5 042012

[44] [44] Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J and Tour J M 2018 Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food ACS Nano12 2176–83

[45] [45] Song Y P, Zhang J X, Li N, Han S, Xu S H, Yin J, Qu W L, Liu C, Zhang S D and Wang Z Y 2020 Design of a high performance electrode composed of porous nickel–cobalt layered double hydroxide nanosheets supported on vertical graphene fibers for flexible supercapacitors New J. Chem.44 6623–34

[46] [46] Zhao L L, Liu Z, Chen D, Liu F, Yang Z Y, Li X, Yu H H, Liu H and Zhou W J 2021 Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage Nano-Micro Lett.13 49

[47] [47] Song Y P et al 2023 Macro-sized all-graphene 3D structures via layer-by-layer covalent growth for micro-to-macro inheritable electrical performances Adv. Funct. Mater.33 2305191

[48] [48] Movaghgharnezhad S and Kang P 2024 Laser-induced graphene: synthesis advances, structural tailoring, enhanced properties, and sensing applications J. Mater. Chem. C 12 6718–42

[49] [49] Peng J et al 2020 Surface coordination layer passivates oxidation of copper Nature586 390–4

[50] [50] Hong S Q, Liu C M, Hao S Q, Fu W X, Peng J, Wu B H and Zheng N F 2022 Antioxidant high-conductivity copper paste for low-cost flexible printed electronics npj Flex. Electron.6 17

[51] [51] Lee S K, Hsu H C and Tuan W H 2016 Oxidation behavior of copper at a temperature below 300 °C and the methodology for passivation Mater. Res.19 51–56

[52] [52] Choudhary S, Sarma J V N, Pande S, Ababou-Girard S, Turban P, Lepine B and Gangopadhyay S 2018 Oxidation mechanism of thin Cu films: a gateway towards the formation of single oxide phase AIP Adv.8 055114

[53] [53] Kwak J, Jo Y, Park S D, Kim N Y, Kim S Y, Shin H J, Lee Z, Kim S Y and Kwon S Y 2017 Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins Nat. Commun.8 1549

[54] [54] Galbiati M, Stoot A C, Mackenzie D M A, Bggild P and Camilli L 2017 Real-time oxide evolution of copper protected by graphene and boron nitride barriers Sci. Rep.7 39770

[55] [55] Cao M M, Wang H, Ji S, Zhao Q, Pollet B G and Wang R F 2019 Hollow core-shell structured Cu2O@Cu1.8S spheres as novel electrode for enzyme free glucose sensing Mater. Sci. Eng. C 95 174–82

[56] [56] Gupta M, Hawari H F, Kumar P and Burhanudin Z A 2022 Copper oxide/functionalized graphene hybrid nanostructures for room temperature gas sensing applications Crystals12 264

[57] [57] Creutzburg M, Sellschopp K, Tober S, Grns E, Vonk V, Mayr-Schmlzer W, Mller S, Noei H, Vonbun-Feldbauer G B and Stierle A 2021 Heterogeneous adsorption and local ordering of formate on a magnetite surface J. Phys. Chem. Lett.12 3847–52

[58] [58] Lin J Y, Neoh K G and Teo W K 1994 Thermogravimetry-FTIR study of the surface formate decomposition on Cu, CuCl, Cu2O and CuO. Correlations between reaction selectivity and structural properties J. Chem. Soc. Faraday Trans.90 355–62

[59] [59] Mudalige K and Trenary M 2002 Identification of formate from methanol oxidation on Cu(100) with infrared spectroscopy Surf. Sci.504 208–14

[60] [60] Pan X W, Wang L Q, Ling F, Li Y H, Han D X, Pang Q and Jia L S 2015 A novel biomass assisted synthesis of Au-SrTiO3 as a catalyst for direct hydrogen generation from formaldehyde aqueous solution at low temperature Int. J. Hydrog. Energy40 1752–9

[61] [61] Shao Q, Liu G, Teweldebrhan D and Balandin A A 2008 High-temperature quenching of electrical resistance in graphene interconnects Appl. Phys. Lett.92 202108

[62] [62] Vasko F T and Ryzhii V 2007 Voltage and temperature dependencies of conductivity in gated graphene Phys. Rev. B 76 233404

[63] [63] Yang Y R et al 2020 A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat Nat. Biotechnol.38 217–24

[64] [64] Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L and Cao M S 2015 Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets Phys. Lett. A 379 2245–51

Tools

Get Citation

Copy Citation Text

Xu Kaichen, Cai Zimo, Luo Huayu, Lin Xingyu, Yang Geng, Xie Haibo, Ko Seung Hwan, Yang Huayong. An in-situ hybrid laser-induced integrated sensor system with antioxidative copper[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 65501

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Apr. 28, 2024

Accepted: Feb. 13, 2025

Published Online: Feb. 13, 2025

The Author Email:

DOI:10.1088/2631-7990/ad6aae

Topics