Journal of Advanced Dielectrics, Volume. 14, Issue 4, 2340004(2024)
A series of formic acid MOFs/polylactic acid blending composites with the improved dielectric performance in Co(II) systems
[1] M. S. Denny, M. Kalaj, K. C. Bentz, S. M. Cohen. Multicomponent metal-organic framework membranes for advanced functional composites. Chem. Sci., 9, 8842(2018).
[2] M. Simenas, S. Balciunas, A. Gonzalez-Nelson, M. Kinka, M. Ptak, M. A. van der Veen, M. Maczka, J. Banys. Preparation and dielectric characterization of P(VDF-TrFE) copolymer-based composites containing metal-formate frameworks. J. Phys. Chem. C, 123, 16380(2019).
[3] J. M. Stangl, D. Dietrich, A. E. Sedykh, C. Janiak, K. Muller-Buschbaum. Luminescent MOF polymer mixed matrix membranes for humidity sensing in real status analysis. J. Mater. Chem. C, 6, 9248(2018).
[4] L. L. Wang, P. L. Zheng, W. L. Zhang, M. Z. Xu, K. Jia, X. B. Liu. Detection of Cu2+ metals by luminescent sensor based on sulfonated poly (arylene ether nitrile)/metal-organic frameworks. Mater. Today Commun., 16, 258(2018).
[5] X. Zhang, Q. Zhang, D. Yue, J. Zhang, J. T. Wang, B. Li, Y. Yang, Y. J. Cui, G. D. Qian. Flexible metal-organic framework-based mixed-matrix membranes: A new platform for H2S sensors. Small, 14, 1801563(2018).
[6] P. A. Kobielska, A. J. Howarth, O. K. Farha, S. Nayak. Metal-organic frameworks for heavy metal removal from water. Coord. Chem. Rev., 358, 92(2018).
[7] C. Liu, M. Mullins, S. Hawkins, M. Kotaki, H. J. Sue. Epoxy nanocomposites containing zeolitic imidazolate framework-8. ACS Appl. Mater. Interfaces, 10, 1250(2018).
[8] S. Sachdeva, S. J. H. Koper, A. Sabetghadam, D. Soccol, D. J. Gravesteijn, F. Kapteijn, E. J. R. Sudholter, J. Gascon, L. de Smet. Gas phase sensing of alcohols by metal organic framework-polymer composite materials. ACS Appl. Mater. Interfaces, 9, 24926(2017).
[9] X. W. Shi, X. Dai, Y. Cao, J. W. Li, C. G. Huo, X. L. Wang. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res., 56, 3887(2017).
[10] Y. Wang, W. Z. Zhang, X. M. Wu, C. Y. Luo, Q. G. Wang, J. H. Li, L. Hu. Synth. Met., 228, 18(2017).
[11] J. M. Zhu, J. B. Shen, S. Y. Guo, H. J. Sue. Carbon, 84, 355(2015).
[12] J. Y. Pei, J. W. Zha, W. Y. Zhou, S. J. Wang, S. L. Zhong, L. J. Yin, M. S. Zheng, H. W. Cai, Z. M. Dang. Appl. Phys. Lett., 114, 103702(2019).
[13] S. B. Luo, T. Q. Ansari, J. Y. Yu, S. H. Yu, P. P. Xu, L. Q. Cao, H. T. Huang, R. Sun. Chem. Eng. J., 412, 128476(2021).
[14] X. Huang, X. Zhang, G. K. Ren, J. Y. Jiang, Z. K. Dan, Q. H. Zhang, X. Zhang, C. W. Nan, Y. Shen. J. Mater. Chem. A, 7, 15198(2019).
[15] S. P. Fillery, H. Koerner, L. Drummy, E. Dunkerley, M. F. Durstock, D. F. Schmidt, R. A. Vaia. Acs Appl. Mater. Interfaces, 4, 1388(2012).
[16] Z. K. Dan, W. B. Ren, M. F. Guo, Z. H. Shen, T. Zhang, J. Y. Jiang, C. W. Nan, Y. Shen. Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics. IET Nanodielectrics, 3, 147(2020).
[17] S. Sachdeva, D. Soccol, D. J. Gravesteijn, F. Kapteijn, E. J. R. Sudholter, J. Gascon, L. de Smet. Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices. ACS Sens., 1, 1188(2016).
[18] K. Nairn, M. Forsyth, H. Every, M. Greville, D. R. MacFarlane. Polymer-ceramic ion-conducting composites. Solid State Ion., 86-88(1996).
[19] L. M. Mathieu, P. E. Bourban, J. A. E. Manson. Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos. Sci. Technol., 66, 1606(2006).
[20] R. Kumar, R. Singh, M. S. J. Hashmi. Polymer-ceramic composites: A state of art review and future applications. Adv. Mater. Process. Technol., 8, 895(2020).
[21] B. Kumar, L. G. Scanlon. Polymer-ceramic composite electrolytes. J. Power Sources, 52, 261(1994).
[22] R. Jones, A. Szweda, D. Petrak. Polymer derived ceramic matrix composites. Compos. A. Appl. Sci. Manuf., 30, 569(1999).
[23] F. Chao, G. Z. Liang, W. F. Kong, Z. P. Zhang, J. H. Wang. Dielectric properties of polymer/ceramic composites based on thermosetting polymers. Polym. Bull., 60, 129(2008).
[24] X. W. Yu, A. Manthiram. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Stor. Mater., 34, 282(2021).
[25] S. D. Vacche, V. Michaud, D. Damjanovic, J. A. E. Manson, Y. Leterrier. Improved mechanical dispersion or use of coupling agents? Advantages and disadvantages for the properties of fluoropolymer/ceramic composites. Polymer, 154, 8(2018).
[26] V. T. Rathod, J. S. Kumar, A. Jain. Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci., 7, 519(2017).
[27] M. Ahmadipour, H. Mohammadi, A. L. Pang, M. Arjmand, T. A. Otitoju, P. U. Okoye, B. Rajitha. A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater., 71, 180(2020).
[28] Y. J. Cui, B. Li, H. J. He, W. Zhou, B. L. Chen, G. D. Qian. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res., 49, 483(2016).
[29] R. Ricco, C. Pfeiffer, K. Sumida, C. J. Sumby, P. Falcaro, S. Furukawa, N. R. Champness, C. J. Doonan. Emerging applications of metal-organic frameworks. Crystengcomm, 18, 6532(2016).
[30] R. Shang, S. Chen, K. L. Hu, B. W. Wang, Z. M. Wang, S. Gao. A variety of phase-transition behaviors in a niccolite series of NH3(CH2)(4)NH3 M(HCOO)(3). Chem. Eur. J., 22, 6199(2016).
[31] Q. Chen, Y. Shen, S. H. Zhang, Q. M. Zhang. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res., 45, 433(2015).
[32] Q. Li, L. Chen, M. R. Gadinski, S. H. Zhang, G. Z. Zhang, H. Y. Li, A. Haque, L. Q. Chen, T. N. Jackson, Q. Wang. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 523, 576(2015).
[33] R. Shang, G. C. Xu, Z. M. Wang, S. Gao. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks. Chem. Eur. J., 20, 1146(2014).
[34] Z. M. Wang, S. Gao. Can molecular ferroelectrics challenge pure inorganic ones?. Natl. Sci. Rev., 1, 25(2014).
[35] Q. Q. Zhu, R. Shang, S. Chen, C. L. Liu, Z. M. Wang, S. Gao. (C2H5)(4)N U2O4(HCOO)(5), an ammonium uranyl formate framework showing para- to ferro-electric transition: Synthesis, structures, and properties. Inorg. Chem., 53, 8708(2014).
[36] S. Chen, R. Shang, K. L. Hu, Z. M. Wang, S. Gao. NH2NH3 M(HCOO)(3) (M =Mn2+, Zn2+, Co2+ and Mg2+): Structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering. Inorg. Chem. Front., 1, 83(2014).
[37] L. Mazzuca, L. Canadillas-Delgado, O. Fabelo, J. A. Rodriguez-Velamazan, J. Luzon, O. Vallcorba, V. Simonet, C. V. Colin, J. Rodriguez-Carvajal. Microscopic insights on the multiferroic perovskite-like CH3NH3 Co(COOH)(3) compound. Chem. Eur. J., 24, 388(2018).
[38] P. Durand, S. Techert. Structural and spectroscopic properties in the (CH3NH3)(2)Mn(1−x)MxCl(4) (0<=x<=1) system with M=Co or Cu. Acta Crystallogr. A, Found. Adv., 60, S77(2004).
[39] D. Bhadra, A. Biswas, S. Sarkar, B. K. Chaudhuri, K. F. Tseng, H. D. Yang. Low loss high dielectric permittivity of polyvinylidene fluoride and KxTiyNix−yO (x=0.05, y=0.02 composites. J. Appl. Phys., 107, 124115(2010).
[40] A. Dimiev, W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, J. M. Tour. Low-loss, high-permittivity composites made from graphene nanoribbons. ACS Appl. Mater. Interfaces, 3, 4657(2011).
[41] S. K. Patil, M. Y. Koledintseva, R. W. Schwartz, W. Huebner. Prediction of effective permittivity of diphasic dielectrics using an equivalent capacitance model. J. Appl. Phys., 104, 074108(2008).
[42] L. Qi, B. I. Lee, S. H. Chen, W. D. Samuels, G. J. Exarhos. High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater., 17, 1777(2005).
[43] G. Subodh, V. Deepu, P. Mohanan, M. T. Sebastian. Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Appl. Phys. Lett., 95, 062903(2009).
[44] C. Wu, X. Y. Huang, X. F. Wu, L. Y. Xie, K. Yang, P. K. Jiang. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale, 5, 3847(2013).
[45] J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre, J. B. Bai. High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett., 98, 032901(2011).
[46] W. Zhang, R. G. Xiong. Ferroelectric metal-organic frameworks. Chem. Rev., 112, 1163(2012).
[47] P. Naskar, P. Chakraborty, D. Kundu, A. Maiti, B. Biswas, A. Banerjee. Envisaging future energy storage materials for supercapacitors: An ensemble of preliminary attempts. Chemistryselect, 6, 1127(2021).
[48] Q. Y. Zhao, L. Yang, Q. R. Peng, Y. Z. Ma, H. L. Ji, J. H. Qiu. Achieving superior energy density in ferroelectric P(VDF-HFP) through the employment of dopamine-modified MOFs. Compos. Sci. Technol., 201, 108520(2021).
[49] L. Z. Guan, L. Weng, Q. Li, X. R. Zhang, Z. J. Wu, Y. Y. Ma. Design and preparation of ultra-thin 2D Ag-NiMOF ferroelectric nanoplatelets for PVDF based dielectric composites. Mater. Des., 197, 109241(2021).
[50] Q. X. Jia, D. H. Yang, L. Jin, Z. C. Zhang. Enhancement of permittivity in P(VDF-CTFE)/metal-organic frameworks mixed matrix membranes. J. Appl. Polym. Sci., 137, 49539(2020).
Get Citation
Copy Citation Text
Zhuting Hao, Danhong Yang, Zhicheng Zhang, Qin-Xiang Jia, Wen Zhang. A series of formic acid MOFs/polylactic acid blending composites with the improved dielectric performance in Co(II) systems[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2340004
Category: Research Articles
Received: Aug. 25, 2023
Accepted: Oct. 24, 2023
Published Online: Nov. 5, 2024
The Author Email: Jia Qin-Xiang (qinxiangjia1984@mail.xjtu.edu.cn)