Journal of the Chinese Ceramic Society, Volume. 53, Issue 1, 102(2025)
Enhanced Properties of CdMgTe Crystals by Multi-Step Annealing Method
[1] [1] ROY U N, BOLOTNIKOV A E, CAMARDA G S, et al. Growth of CdTexSe1-x from a Te-rich solution for applications in radiation detection[J]. J Cryst Growth, 2014, 386: 43-46.
[2] [2] WU S Y, HUANG Z, CHEN B S, et al. Identification of twin and nanoscale Te precipitations in CdZnTe crystals grown by vertical gradient method with HRTEM[J]. Mater Charact, 2022, 185: 111739.
[3] [3] HOSSAIN A, YAKIMOVICH V, BOLOTNIKOV A E, et al. Development of Cadmium Magnesium Telluride (Cd1-xMgxTe) for room temperature X- and gamma-ray detectors[J]. J Cryst Growth, 2013, 379: 34-40.
[4] [4] YU P F, JIANG B R, CHEN Y R, et al. Growth and characterization of room temperature radiation detection material Cd0.95Mg0.05Te[J]. J Cryst Growth, 2020, 543: 125719.
[5] [5] LUAN L J, ZHENG D, LIU Z W, et al. Dislocations and Te precipitates of Cd0.9Mn0.1Te:V crystal grown by Tellurium solution vertical Bridgman method[J]. J Cryst Growth, 2019, 513: 43-47.
[6] [6] ZOU J N, FAULER A, SENCHENKOV A S, et al. Analysis of Te inclusion striations in (Cd, Zn)Te crystals grown by traveling heater method[J]. Crystals, 2021, 11(6): 649.
[7] [7] WARDAK A, CHROMISKI W, RESZKA A, et al. Stresses caused by Cd and Te inclusions in CdMnTe crystals and their impact on charge carrier transport[J]. J Alloys Compd, 2021, 874: 159941.
[8] [8] YANG F, JIE W Q, WANG M, et al. Growth of single-crystal Cd0.9Zn0.1Te ingots using pressure controlled bridgman method[J]. Crystals, 2020, 10(4): 261.
[9] [9] SCHWARZ R, BENZ K W. Thermal field influence on the formation of Te inclusions in CdTe grown by the travelling heater method[J]. J Cryst Growth, 1994, 144(3-4): 150-156.
[10] [10] MYCIELSKI A, WARDAK A, KOCHANOWSKA D, et al. CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties[J]. Prog Cryst Growth Charact Mater, 2021, 67(4): 100543.
[11] [11] BELAS E, BUGR M, GRILL R, et al. Elimination of inclusions in (CdZn)Te substrates by post-grown annealing[J]. J Electron Mater, 2007, 36(8): 1025-1030.
[12] [12] ZHANG J J, WANG L J, MIN J H, et al. Annealing of indium-doped CdMnTe single crystals under Cd vapors[J]. J Cryst Growth, 2012, 358: 12-15.
[13] [13] CHOI H, PARK J M, CHAI J S. Improvement of charge collection efficiency of the CdZnTe detectors by decreasing the Te inclusions[J]. Mater Res Express, 2022, 9(10): 105901.
[15] [15] YU P F, XU Y D, LUAN L J, et al. Quality improvement of CdMnTe: In single crystals by an effective post-growth annealing[J]. J Cryst Growth, 2016, 451: 194-199.
[16] [16] HUANG Z, WU S Y, CHEN B S, et al. Tailoring the defects and resistivity in CdZnTe single crystal via one-step annealing with CdTe compound[J]. Vacuum, 2023, 217: 112519.
[17] [17] YU P F, CHEN Y R, SONG J, et al. Study of optical properties of high-resistivity CdMnTe: In single crystals before and after H2 atmosphere annealing[J]. Mater Sci Eng B, 2019, 246: 120-126.
[18] [18] KIM K, HWANG S, YU H, et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity[J]. IEEE Trans Nucl Sci, 2018, 65(8): 2333-2337.
[19] [19] YU P F, CHEN Y R, LI W, et al. Study of detector-grade CdMnTe: In crystals obtained by a multi-step post-growth annealing method[J]. Crystals, 2018, 8(10): 387.
[20] [20] ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298-2500 K[J]. Can Metall Q, 1984, 23(3): 309-313.
[21] [21] LI G Q, ZHANG X L, HUA H, et al. Upgrading of CdZnTe by annealing with pure Cd and Zn metals[J]. Semicond Sci Technol, 2006, 21(3): 392-396.
[22] [22] GAO P D, YU P F, YANG G Z, et al. Effects of excess Te on the optical and electrical properties of Cd1−xMgxTe single crystals grown by the modified vertical Bridgman method[J]. CrystEngComm, 2023, 25(9): 1446-1452.
[23] [23] RUGEN-HANKEY S L, CLAYTON A J, BARRIOZ V, et al. Improvement to thin film CdTe solar cells with controlled back surface oxidation[J]. Sol Energy Mater Sol Cells, 2015, 136: 213-217.
[24] [24] SREEKANTH T V M, PANDURANGAN M, DILLIP G R, et al. Toxicity and efficacy of CdO nanostructures on the MDCK and Caki-2 cells[J]. J Photochem Photobiol B, 2016, 164: 174-181.
[25] [25] RHEINHEIMER V, UNLUER C, LIU J W, et al. XPS study on the stability and transformation of hydrate and carbonate phases within MgO systems[J]. Materials, 2017, 10(1): 75.
[26] [26] SHEN M, ZHANG J J, WANG L J, et al. Investigation on the surface treatments of CdMnTe single crystals[J]. Mater Sci Semicond Process, 2015, 31: 536-542.
[27] [27] HAN J F, KRISHNAKUMAR V, SCHIMPER H J, et al. Investigation of structural, chemical, and electrical properties of CdTe/back contact interface by TEM and XPS[J]. J Electron Mater, 2015, 44(10): 3327-3333.
[28] [28] VYDYANATH H R, ELLSWORTH J, KENNEDY J J, et al. Recipe to minimize Te precipitation in CdTe and (Cd, Zn)Te crystals[J]. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 1992, 10(4): 1476-1484.
[29] [29] YU P F, JIANG B R, HAN Z, et al. Characterization of physical and optical properties of a new radiation detection material CdMgTe[J]. Opt Mater, 2022, 131: 112656.
[30] [30] FRANC J, MORAVEC P, DDI V, et al. Microhardness study of Cd1-xZnxTe1-ySey crystals for X-ray and gamma ray detectors[J]. Mater Today Commun, 2020, 24: 101014.
[31] [31] HWANG Y, KIM H, CHO S, et al. Temperature dependence of Vickers hardness for Cd1-xMnxTe (0⩽x𪟐.82) single crystals[J]. J Cryst Growth, 2003, 249(3-4): 391-395.
[32] [32] YODER-SHORT D R, DEBSKA U, FURDYNA J K. Lattice parameters of Zn1−xMnxSe and tetrahedral bond lengths in AII1−xMnxBVI alloys[J]. J Appl Phys, 1985, 58(11): 4056-4060.
[33] [33] XU S H, WANG C L, CUI Y P. Theoretical characters of MgX (X=Te, Se, S and O) clusters[J]. J Nonlinear Optic Phys Mat, 2010, 19(4): 695-701.
[34] [34] SEN S, RHIGER D R, CURTIS C R, et al. Infrared absorption behavior in CdZnTe substrates[J]. J Electron Mater, 2001, 30(6): 611-618.
[35] [35] LAX M, BURSTEIN E. Infrared lattice absorption in ionic and homopolar crystals[J]. Phys Rev, 1955, 97(1): 39-52.
[36] [36] SEDZICKI P, SKOWRONSKI L, SZCZESNY R, et al. Influence of phosphorus ion implantation on the optical properties of CdTe bulk crystal[J]. J Alloys Compd, 2020, 844: 156002.
[37] [37] WEI Y F, FANG W Z, LIU C F, et al. Annealing study of Cd1-xZnxTe crystals by IR transmission and micro-Raman spectrum[C]//SPIE Proceedings, Materials for Infrared Detectors II. Seattle, WA. SPIE, 2002: 173-180.
[38] [38] YU P F, JIANG B R, CHEN Y R, et al. Study on In-doped CdMgTe crystals grown by a modified vertical bridgman method using the ACRT technique[J]. Materials, 2019, 12(24): 4236.
[39] [39] CHAUDHURI S K, SAJJAD M, KLEPPINGER J W, et al. Charge transport properties in CdZnTeSe semiconductor room-temperature -ray detectors[J]. J Appl Phys, 2020, 127(24): 245706.
Get Citation
Copy Citation Text
ZHANG Jiawei, YU Pengfei, HAN Zhao, YANG Guizhi, JIE Wanqi. Enhanced Properties of CdMgTe Crystals by Multi-Step Annealing Method[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 102
Category:
Received: Jul. 2, 2024
Accepted: Jan. 10, 2025
Published Online: Jan. 10, 2025
The Author Email: