Electro-Optic Technology Application, Volume. 24, Issue 3, 1(2009)
Developments of Wet and Dry Process Techniques for HgCdTe Detector Fabrication
[1] [1] R Kiran, R Sporken, T N Casselman, et al. Effect of Atmosphere on n -Type Hg1-xCdxTe Surface after Different Wet Etching Treatments: An Electrical and Structural Study[J]. Journal of Electronic Materials,2008,37(9):1471-1479.
[2] [2] J B Varesi, J D Benson, M Martinka, et al. Investigation of HgCdTe surface quality following Br-based etching for device fabrication using spectroscopic ellipsometry[J]. Journal of Electronic Materials, 2005,34(6):758-761.
[3] [3] Shubhrangshu Mallick, Rajni Kiran, Siddhartha Ghosh, et al. Comparative Study of HgCdTe Etchants: An Electrical Characterization[J]. Journal of Electronic Materials, 2007,36(8):993-999.
[4] [4] Heinrich Figgemeier, Martin Bruder,Karl-Martin Mahlein, et al. Impact of critical processes on HgCdTe diode performance and yield[J]. Journal of Electronic Materials, 2003,32(7):588-591.
[5] [5] V Srivastav, R Pal, H P Vyas. Overview of etching technologies used for HgCdTe[J]. Opto-electronics Review, 2005,13(3):197-211.
[6] [6] B L Williams, H G Robinson, C R Helms. Ion dependent interstitial generation of implanted mercury cadmium telluride[J], Applied Physics Letters, 1997,71(5):692-694.
[7] [7] M Arias, J G Pasko, M Zandian, et al. Planar p-on-n HgCdTe heterostructure photovoltaic detectors[J]. Applied Physics Letters,1993,62(9): 976-978.
[8] [8] J Rutkowski. Planar junction formation in HgCdTe infrared detectors[J]. Opto-Electronics Review, 2004,12(1):123-128.
[9] [9] Rachna Manchanda, R K Sharma, A Malik, et al. Be ion irradiation induced p-to n-type conversion in HgCdTe[J]. Journal of Applied Physics, 2007,101(11):6102-6104
[10] [10] L O Bubulac. Defects, diffusion and activation in ion implanted HgCdTe[J]. Journal of Crystal Growth, 1988,86:723-734.
[11] [11] J Rutkowski. Planar junction formation in HgCdTe infrared detectors[J]. Opto-Electronics Review, 2004,12(1):123-128.
[12] [12] M H Aguirre, H R Canepa. Ar-implanted epitaxially grown HgCdTe: evaluation of structural damage by RBS and TEM[C]//Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001,175:274-279.
[13] [13] Myriam H Aguirre, Horacio R Cánepa, Noemí E Walsede Reca. Transmission electron microscopy of the induced damage by argon implantation in (111) HgCdTe at room temperature[J]. Journal of Applied Physics, 2002,92(10):5745-5748.
[14] [14] L O Bubulac. The role of epitaxy and substrate on junction formation in ion-implanted HgCdTe[J]. Journal of Crystal Growth,1985, 72(1/2):478-484.
[15] [15] L O Bubulac, W E Tennant. Role of Hg in junction formation in ion-implanted HgCdTe[J]. Applied Physics Letters, 1987,51(5):355-357.
[16] [16] P Leveque, A Declemy, P O Renault. Influence of extended structural defects on the effective carrier concentration of p-type Hg0.78Cd0.22Te implanted with aluminium ions[C]//Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000,168 (1):40-46.
[17] [17] L Dumanski, M Bester, I S Virt, et al. The p-n junction formation in Hg1-xCdxTe by laser annealing method[J].Applied Surface Science, 2006,252 (13):4481-4485.
[18] [18] V V Semak, J G Thomas, B R Campbell.Drilling of steel and HgCdTe with the femtosecond pulses produced by a commercial laser system[J]. Journal of Physics D: Applied Physics, 2004,37 (20):2925-2931.
[19] [19] F X Zha, S M Zhou, H L Ma, et al. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe[J]. Applied Physics Letters, 2008,93(15):1113-1115.
[20] [20] J D Benson, A J Stoltz, P R Boyd, et al. Lithography factors that determine the aspect ratio of electron cyclotron resonance plasma etched HgCdTe trenches[J]. Journal of Electronic Materials, 2003,32(7):686-691.
[21] [21] E Laffosse, J Baylet, J P Chamonal, et al. Inductively coupled plasma etching of HgCdTe using a CH4-based mixture[J]. Journal of Electronic Materials, 2005,34(6):740-745.
[22] [22] A J Stoltz, J D Benson, J B Varesi, et al. Macro-loading effects of electron-cyclotron resonance etched Ⅱ-Ⅵ materials[J]. Journal of Electronic Materials, 2004,33(6):684-689.
[23] [23] A J Stoltz, M Jaime-Vasquez, J D Benson, et al. Examination of the effects of high-density plasmas on the surface of HgCdTe[J]. Journal of Electronic Materials, 2006,35(6):1461-1464.
[24] [24] E P G Smith, J K Gleason, L T Pham, et al. Inductively coupled plasma etching of HgCdTe[J]. Journal of Electronic Materials,2003,32(7):816-820.
[25] [25] Eyneen Altaf, Amit Malik, Ravinder Pal, et al. Dry Processes for HgCdTe Infrared Detector Arrays[J]. Invertis Journal of Science & Technology, 2007,1(4):260-279.
[28] [28] V Srivastav, R Pal, B L Sharma, et al. Etching of mesa structures in HgCdTe[J]. Journal of Electronic Materials, 2005,34(11):1440-1445.
[29] [29] J Rutkowski. Planar junction formation in HgCdTe infrared detectors[J]. Opto-Electronics Review, 2004,12(1):123-128.
[30] [30] A J Stoltz, J D Benson, P R Boyd, et al. The effect of electron cyclotron resonance plasma parameters on the aspect ratio of trenches in HgCdTe[J].Journal of Electronic Materials,2003,32(7):692-697.
[31] [31] J D Benson, A J Stoltz, J B Varesi, et al. Determination of the ion angular distribution for electron cyclotron resonance, plasma-etched HgCdTe trenches[J].Journal of Electronic Materials, 2004,33(6):543-551.
[32] [32] J D Benson, A J Stoltz, A W Kaleczyc, et al. Effect of photoresist-feature geometry on electron-cyclotron resonance plasma-etch reticulation of HgCdTe diodes[J]. Journal of Electronic Materials,2002,31(7):822-826.
[33] [33] J Antoszewski, C A Musca, J M Dell, et al. Characterization of Hg0.7Cd0.3Te n- on p-type structures obtained by reactive ion etching induced p to n conversion[J]. Journal of Electronic Materials,2000,29(6):837-840.
[34] [34] J White, R Pal, J M Dell, et al. p-to-n type-conversion mechanisms for HgCdTe exposed to H2/CH4 plasmas[J]. Journal of Electronic Materials,2001,30(6):762-767.
[35] [35] T Nguyen, J Antoszewski, C A Musca, et al. Transport properties of reactive-ion-etching-induced p-to-n type converted layers in HgCdTe[J]. Journal of Electronic Materials,2002,31(7):652-659.
[36] [36] R Pal, P K Chaudhury, B L Sharma, et al. Uniformity in HgCdTe diode arrays fabricated by reactive ion etching[J]. Journal of Electronic Materials,2004,33(2):141-145.
[37] [37] J K White, J Antoszewski, R Pal, et al. Passivation effects on reactive-ion-etch-formed n-on-p junctions in HgCdTe[J]. Journal of Electronic Materials, 2002,31(7):743-748.
[38] [38] J M Dell,J Antoszewski, M H Rais, et al. HgCdTe mid-wavelength IR photovoltaic detectors fabricated using plasma induced junction technology[J]. Journal of Electronic Materials,2000,29(6):841-848.
[39] [39] J Antoszewski, C A Musca, J M Dell, et al. Small two-dimensional arrays of mid-wavelength infrared HgCdTe diodes fabricated by reactive ion etching-induced p-to-n-type conversion[J].Journal of Electronic Materials,2003,32(7):627-632.
[40] [40] A J Stoltz, J B Varesi, J D Benson. Comparing ICP and ECR Etching of HgCdTe, CdZnTe, and CdTe[J]. Journal of Electronic Materials,2007,36(8):1007-1012.
[41] [41] R C Keller, M Seelman-Eggbert, H J Richter. Dry etching of Hg1-xCdxTe using CH4/H2/Ar/N2 electron cyclotron resonance plasmas[J]. Journal of Electronic Materials, 1996,25:1270-1275.
[42] [42] Jaehwa Kim, T S Koga, H P Gillis, et al. Low-energy electron-enhanced etching of HgCdTe[J]. Journal of Electronic Materials,2003,32(7):677-685.
[43] [43] B A Park, C A Musca, J Antoszewski, et al. Effect of High-Density Plasma Process Parameters on Carrier Transport Properties in p-to-n Type Converted Hg0.7Cd0.3Te Layer[J]. Journal of Electronic Materials, 2007,36(8):913-918.
[44] [44] B A Park, C A Musca, R J Westerhaut, et al. MWIR HgCdTe Photodiodes based on high-density plasma-induced type conversion[J]. Semiconductor Science and Technology, 2008,23 (9):5027-5032.
[45] [45] E P G Smith, E A Patten, P M Goetz, et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors[J]. Journal of Electronic Materials,2006,35(6):1145-1152.
[46] [46] A J Stoltz, J D Benson, P J Smith. Morphology of Inductively Coupled Plasma Processed HgCdTe Surfaces[J]. Journal of Electronic Materials,2008,37(9):1225-1230.
[47] [47] M Pociask, I I Izhnin, A I Izhnin, et al. Donor doping of HgCdTe for LWIR and MWIR structures fabricated with ion milling[J]. Semiconductor Science and Technology, 2009,24(2):5031-5034.
[48] [48] M Pociask, I I Izhnin, S A Dvoretsky, et al. Ion-milling-assisted study of defect structure of acceptor-doped HgCdTe heterostructures grown by molecular beam epitaxy[J]. Semiconductor Science and Technology, 2008,23 (9):5001-5005.
[49] [49] V V Bogoboyashchyy,I I Izhnin, K D Mynbaev, et al. Relaxation of electrical properties of n-type layers formed by ion milling in epitaxial HgCdTe doped with V-group acceptors[J]. Semiconductor Science and Technology, 2006,21(8):1144-1149.
[50] [50] V V Bogoboyashchyy, A I. Elizarov, I I Izhnin. Conversion of conductivity type in Cu-doped Hg0.8Cd0.2Te crystals under ion beam milling[J]. Semiconductor Science and Technology, 2005,20(8):726-732.
[51] [51] V V Bogoboyashchyy, I I Izhnin, K D Mynbaev. The nature of the compositional dependence of p-n junction depth in ion-milled p-HgCdTe[J]. Semiconductor Science and Technology, 2006,21(2):116-123.
[52] [52] R Haakenaasen, T Moen, T Colin, et al. Depth and lateral extension of ion milled pn junctions in CdHgTe from electron beam induced current measurements[J]. Journal of Applied Physics, 2002,91(1):427-432.
Get Citation
Copy Citation Text
WANG Yi-feng, TANG Li-bin. Developments of Wet and Dry Process Techniques for HgCdTe Detector Fabrication[J]. Electro-Optic Technology Application, 2009, 24(3): 1
Category:
Received: Apr. 14, 2009
Accepted: --
Published Online: Dec. 30, 2009
The Author Email:
CSTR:32186.14.