Ultrafast Science, Volume. 3, Issue 1, 0018(2023)

Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting

Guiyuan Cao1,2, Han Lin2,3、*, and Baohua Jia2,3、*
Author Affiliations
  • 1Centre for Translational Atomaterials, School of Science, Swinburne University of Technology,  John Street, Hawthorn, VIC 3122, Australia.
  • 2The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia.
  • 3School of Science, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia.
  • show less
    References(54)

    [1] [1] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45(11):8185.

    [3] [3] He H, Heckenberg N, Rubinsztein-Dunlop H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J Mod Opt. 1995;42(1):217–223.

    [4] [4] Voogd RJ, Singh M, Braat JJ. The use of orbital angular momentum of light beams for optical data storage. Proc SPIE. 2004;5380:387–392.

    [5] [5] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett. 2002;89(24):Article 240401.

    [6] [6] Zou X, Mathis W. Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys Rev A. 2005;71(4):Article 042324.

    [8] [8] Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett. 2006;97(16):Article 163903.

    [10] [10] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5(6):343–348.

    [11] [11] Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys. 2007;3(5):305–310.

    [12] [12] Beijersbergen MW, Allen L, van der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun. 1993;96(1–3):123–132.

    [13] [13] Padgett M, Allen L. Orbital angular momentum exchange in cylindrical-lens mode converters. J Opt B Quantum Semiclassical Opt. 2002;4(2):S17.

    [14] [14] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas'ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448–5456.

    [15] [15] Arlt J, Dholakia K, Allen L, Padgett MJ. The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J Mod Opt. 1998;45(6):1231–1237.

    [17] [17] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, Chenot S, Vézian S, Damilano B, Brändli V, et al. Metasurface orbital angular momentum holography. Nat Commun. 2019;10(1):Article 2986.

    [18] [18] Chung H, Kim D, Choi E, Lee J. E-band metasurface-based orbital angular momentum multiplexing and demultiplexing. Laser Photonics Rev. 2022;16(6):Article 2100456.

    [20] [20] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):Article 1232009.

    [21] [21] Wang S, Wu PC, Su V-C, Lai Y-C, Hung Chu C, Chen J-W, Lu S-H, Chen J, Xu B, Kuan C-H, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):Article 187.

    [24] [24] Wang Y, Chen Q, Yang W, Ji Z, Jin L, Ma X, Song Q, Boltasseva A, Han J, Shalaev VM, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun. 2021;12(1):Article 5560.

    [28] [28] Lin H, Xu ZQ, Cao G, Zhang Y, Zhou J, Wang Z, Wan Z, Liu Z, Loh KP, Qiu C-W, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci Appl. 2020;9(1):Article 137.

    [30] [30] Yang T, Lin H, Jia B. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices. Chin Opt Lett. 2020;18(2):Article 023601.

    [31] [31] Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun. 2015;6(1):Article 8433.

    [36] [36] Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem. 2023.

    [37] [37] Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015;6(1):Article 6984.

    [38] [38] Cao G, Gan X, Lin H, Jia B. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv. 2018;1(7):Article 180012.

    [40] [40] Lin K-T, Lin H, Yang T, Jia B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun. 2020;11(1):Article 1389.

    [43] [43] Wang H, Liu L, Zhou C, Xu J, Zhang M, Teng S, Cai Y. Vortex beam generation with variable topological charge based on a spiral slit. Nano. 2019;8(2):317–324.

    [44] [44] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt. 1966;5(6):967–969.

    [46] [46] Poon T-C. Digital holography and three-dimensional display: Principles and applications. Berlin/Heidelberg (Germany): Springer Science & Business Media; 2006.

    [48] [48] Gu M. Advanced optical imaging theory. Berlin/Heidelberg (Germany): Springer Science & Business Media; 2000. vol. 75.

    [49] [49] Wang Y, Yun W, Jacobsen C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature. 2003;424(6944):50–53.

    [50] [50] Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett. 2011;36(3):406–408.

    [51] [51] Jin Z, Cao G, Wang H, Lin H, Jia B, Qiu CW. Broadband angular momentum cascade via a multifocal graphene vortex generator. Chin Opt Lett. 2022;20(10):Article 103602.

    [52] [52] Lin Z, Hong M. Femtosecond laser precision engineering: From micron, submicron, to nanoscale. Ultrafast Sci. 2021;2021:Article 9783514.

    [53] [53] Zhang Y, Jiang Q, Long M, Han R, Cao K, Zhang S, Feng D, Jia T, Sun Z, Qiu J, et al. Femtosecond laser-induced periodic structures: Mechanisms, techniques, and applications. Opto-Electron Sci. 2022;1:Article 220005.

    [54] [54] Lin Z, Ji L, Hong M. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett. 2022;22(17):7005–7010.

    Tools

    Get Citation

    Copy Citation Text

    Guiyuan Cao, Han Lin, Baohua Jia. Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting[J]. Ultrafast Science, 2023, 3(1): 0018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 12, 2022

    Accepted: Jan. 18, 2023

    Published Online: Dec. 4, 2023

    The Author Email: Lin Han (han.lin2@rmit.edu.au), Jia Baohua (baohua.jia@rmit.edu.au)

    DOI:10.34133/ultrafastscience.0018

    Topics