Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1476(2023)
Effect of Multi Cation Doping on Dielectric Properties for (NaLn)Cu3Ti4O12(Ln=Ce; Nd) Ceramics
[2] [2] ZHAO N, LIANG P, WEI L, et al. Synthesis and dielectric anomalies of CdCu3Ti4O12 ceramics[J]. Ceram Int, 2015, 41(7): 8501-8510.
[3] [3] JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nat Nanotechnol, 2016, 11(1): 23-36.
[6] [6] BOONLAKHORN J, CHANLEK N, MANYAM J, et al. Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics[J]. J Adv Ceram, 2021, 10(6): 1243-1255.
[7] [7] SCHMIDT R, PANDEY S, FIORENZA P, et al. Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics[J]. RSC Adv, 2013, 3(34): 14580.
[8] [8] ZHANG J L, ZHENG P, WANG C L, et al. Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures[J]. Appl Phys Lett, 2005, 87(14): 142901.
[9] [9] HOMES C C, VOGT T, SHAPIRO S M, et al. Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12[J]. Phys Rev B, 2003, 67(9): 092106.
[10] [10] JUMPATAM J, MOOLTANG A, PUTASAENG B, et al. Effects of Mg2+ doping ions on giant dielectric properties and electrical responses of Na1/2Y1/2Cu3Ti4O12 ceramics[J]. Ceram Int, 2016, 42(14): 16287-16295.
[11] [11] MAO P, LU G, YAN Q, et al. Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu3Ti4O12 ceramics[J]. Ceram Int, 2022, 48(21): 32156-32163.
[12] [12] SUBRAMANIAN M A, LI D, DUAN N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases[J]. J Solid State Chem, 2000, 151(2): 323-325.
[13] [13] YANG Z, ZHANG Y, LU Z, et al. Electrical conduction and dielectric properties of the Rb-doped CaCu3Ti4O12[J]. J Am Ceram Soc, 2013, 96(3): 806-811.
[14] [14] DITTL A, KROHNS S, SEBALD J, et al. On the magnetism of Ln2/3Cu3Ti4O12 (Ln=lanthanide)[J]. Eur Phys J. B, 2011, 79(4): 391-400.
[15] [15] LUO F, HE J, HU J, et al. Electric and dielectric properties of Bi-doped CaCu3Ti4O12 ceramics[J]. J Appl Phys, 2009, 105(7): 076104.
[16] [16] ZHAO J, CHEN M, TAN Q. Embedding nanostructure and colossal permittivity of TiO2-covered CCTO perovskite materials by a hydrothermal route[J]. J Alloys Compd, 2021, 885: 160948.
[17] [17] ZHANG J, LU W, HAO R, et al. Microstructure and dielectric properties of CaCu3Ti4O12 ceramics with high breakdown field strength prepared via polymer pyrolysis[J]. Mater Res Bull, 2022, 155: 111946.
[18] [18] SCHMIDT R, STENNETT M C, HYATT N C, et al. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics[J]. J Eur Ceram Soc, 2012, 32(12): 3313-3323.
[19] [19] LI M, SHEN Z, NYGREN M, et al. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects[J]. J Appl Phys, 2009, 106(10): 104106.
[20] [20] LUNKENHEIMER P, FICHTL R, EBBINGHAUS S G, et al. Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12[J]. Phys Rev B, 2004, 70(17): 172102.
[21] [21] RIBEIRO W C, JOANNI E, SAVU R, et al. Nanoscale effects and polaronic relaxation in CaCu3Ti4O12 compounds[J]. Solid State Commun, 2011, 151(2): 173-176.
[22] [22] ADAMS T B, SINCLAIR D C,WEST A R. Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics[J]. J Am Ceram Soc, 2006, 89(10): 3129-3135.
[23] [23] LIANG P, CHAO X, YANG Z. Low dielectric loss, dielectric response, and conduction behavior in Na-doped Y2/3Cu3Ti4O12 ceramics[J]. J Appl Phys, 2014, 116(4): 044101.
[24] [24] KUM-ONSA P, THONGBAI P, PUTASAENG B, et al. Na1/3Ca1/3Bi1/3Cu3Ti4O12: a new giant dielectric perovskite ceramic in ACu3Ti4O12 compounds[J]. J Eur Ceram Soc, 2015, 35(5): 1441-1447.
[25] [25] JUMPATAM J, SOMPHAN W, BOONLAKHORN J, et al. Non-ohmic properties and electrical responses of grains and grain boundaries of Na1/2Y1/2Cu3Ti4O12 ceramics[J]. J Am Ceram Soc, 2017, 100(1): 157-166.
[26] [26] BOONLAKHORN J, SUKSANGRAT P, CHANLEK N, et al. Dielectric properties with high dielectric permittivity and low loss tangent and nonlinear electrical response of sol-gel synthesized Na1/2Sm1/2Cu3Ti4O12 perovskite ceramic[J]. J Eur Ceram Soc, 2022, 42(13): 5659-5668.
[27] [27] KOTB H M, AHMAD M M, ANSARI S A, et al. Dielectric properties of colossal-dielectric-constant Na1/2La1/2Cu3Ti4O12 ceramics prepared by spark plasma sintering[J]. Molecules, 2022, 27(3): 779.
[28] [28] SAENGVONG P, BOONLAKHORN J, CHANLEK N, et al. Effects of sintering conditions on giant dielectric and nonlinear current-voltage properties of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics[J]. Molecules, 2022, 27(16): 5311.
[29] [29] SHANNON R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides[J]. Acta Cryst, 1976, A32: 751-767.
[30] [30] SHAO S F, ZHANG J L, ZHENG P, et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics[J]. J Appl Phys, 2006, 99(8): 08410.
[31] [31] KOLEV N, BONTCHEV R P, JACOBSON A J, et al. Raman spectroscopy of CaCu3Ti4O12[J]. Phys Rev B, 2002, 66(13): 132102.
[32] [32] YUAN L, HU W, FANG S, et al. CdO-CuO-TiO2 ternary dielectric systems: subsolidus phase diagram and the effects of Cu segregation[J]. J Eur Ceram Soc, 2018, 38(15): 4978-4985.
[33] [33] CAPSONI D, BINI M, MASSAROTTI V, et al. Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12[J]. J Solid State Chem, 2004, 177(12): 4494-4500.
[35] [35] GHOSH S, GARCIA V, SINGEWALD K, et al. Cu(II) EPR reveals two distinct binding sites and oligomerization of innate immune protein calgranulin C[J]. Appl Magn Reson, 2018, 49(11): 1299-1311.
[36] [36] ZHANG H M, XIAO W B. Investigations on the EPR parameters and defect structures due to Jahn-Teller effect for the Cu2+ and Ni+ centers in LiNbO3[J]. J Alloys Compd, 2018, 745: 586-591.
[38] [38] LIU Z, CHAO X, LIANG P, et al. Differentiated electric behaviors of La2/3Cu3Ti4O12 ceramics prepared by different methods[J]. J Am Ceram Soc, 2014, 97(7): 2154-2163.
[39] [39] MU C, SONG Y, WANG H, et al. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics[J]. J Appl Phys, 2015, 117(17): 17B723.
[40] [40] HU W, LAU K, LIU Y, et al. Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO2 ceramics: compositional gradient and local structure[J]. Chem Mater, 2015, 27(14): 4934-4942.
[41] [41] BOONLAKHORN J, KIDKHUNTHOD P, CHANLEK N, et al. Effects of DC bias on dielectric and electrical responses in (Y+Zn) co-doped CaCu3Ti4O12 perovskite oxides[J]. J Mater Sci: Mater Electron, 2016, 28(6): 4695-4701.
[42] [42] YUAN L, LI L, LI G, et al. An insight into the polarization mechanism of rutile based oxides with a wide doping levels in the TiO2-CuO-TaO2.5 ternary system[J]. J Alloys Compd, 2019, 780:8-16.
[43] [43] LIU J, DUAN C G, YIN W G, et al. Large dielectric constant and Maxwell-Wagner relaxation inBi23Cu3Ti4O12[J]. Phys Rev B, 2004, 70(14): 144106.
[44] [44] OUYANG Y, DENG Y, LI D, et al. Electrical and thermal properties of surface passivated carbon nanotube/polyvinylidene fluoride composites[J]. IET Nanodielectr, 2018, 1(3): 122-126.
Get Citation
Copy Citation Text
YUAN Longfei, ZHANG Ting, HAN Dandan, CHEN Shujun, ZHANG Yu. Effect of Multi Cation Doping on Dielectric Properties for (NaLn)Cu3Ti4O12(Ln=Ce; Nd) Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1476
Category:
Received: Dec. 12, 2022
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: Longfei YUAN (yuanlf2019@163.com)
CSTR:32186.14.