Acta Photonica Sinica, Volume. 51, Issue 9, 0910001(2022)

Lightweight Real-time Detection Model of Infrared Pedestrian Embedded in Fine-scale

Yinhui ZHANG... Pengcheng ZHANG, Zifen HE* and Sen WANG |Show fewer author(s)
Author Affiliations
  • Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • show less
    Figures & Tables(14)
    Visualization of the feature map
    Structure of TIPRD network
    The distribution of γ before and after sparse training
    Comparison of channel numbers before and after pruning
    Model compression framework
    Example of data
    Test results
    • Table 1. The allocation strategy of anchor

      View table
      View in Article

      Table 1. The allocation strategy of anchor

      Detector sizeTarget sizeAnchor size
      16×16Large target

      (38,132)

      (62,205)

      (116,321)

      32×32Medium target

      (13,49)

      (19,60)

      (25,89)

      64×64Small target

      (5,17)

      (8,26)

      (9,39)

    • Table 2. Hardware configuration

      View table
      View in Article

      Table 2. Hardware configuration

      EquipmentModelQuantity
      CPUIntel(R)Core(TM)i5-10400F1
      GPUNVIDIA GeForce RTX 2080Ti1
      RAM8G DDR4 26662
      Hard disk512G SSD1
    • Table 3. Parameter configuration

      View table
      View in Article

      Table 3. Parameter configuration

      ParameterValue
      Learn rate0.001
      Epoch600
      Momentum0.9
      Hue0.1
      PolicySteps
      Steps3 200,3 600
    • Table 4. Comparison of the effect of precision improvement strategies

      View table
      View in Article

      Table 4. Comparison of the effect of precision improvement strategies

      ModelFine⁃scale detection layer4×CSPK⁃means++

      Size/

      MB

      Speed/

      (frame·s-1

      mAP/

      %

      Yolov4⁃tiny23.590.780.6
      Our24.984.086.5
      Our24.979.987.5
      Yolo⁃pedestrian24.979.389.2
    • Table 5. Comparison of results of different fine-tuning strategies

      View table
      View in Article

      Table 5. Comparison of results of different fine-tuning strategies

      Pruning rateFine tuningKnowledge distillationNumber of channelsSize/MBmAP/%
      0.002 91224.989.2
      0.757284.689.1
      0.757284.689.5
      0.805834.088.6
      0.805834.089.2
      0.853743.587.7
      0.853743.588.0
      0.901843.083.9
      0.901843.084.1
    • Table 6. Comparison of different algorithms

      View table
      View in Article

      Table 6. Comparison of different algorithms

      ModelSize/MBSpeed/(frame·s-1mAP/%
      Yolov3246.349.491.2
      Yolov3-tiny34.794.279.7
      Yolov425643.391.6
      Yolov4-tiny23.590.780.6
      Yolo-pedestrian24.979.389.2
      TIPRD4.088.789.2
    • Table 7. Comparison of detection speed of different models

      View table
      View in Article

      Table 7. Comparison of detection speed of different models

      ModelSpeed/(frame·s-1
      Yolov4/
      Yolov30.95
      Yolov4-tiny5.2
      Yolov3-tiny2.6
      TIPRD6.9
    Tools

    Get Citation

    Copy Citation Text

    Yinhui ZHANG, Pengcheng ZHANG, Zifen HE, Sen WANG. Lightweight Real-time Detection Model of Infrared Pedestrian Embedded in Fine-scale[J]. Acta Photonica Sinica, 2022, 51(9): 0910001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 4, 2022

    Accepted: Apr. 21, 2022

    Published Online: Oct. 26, 2022

    The Author Email: HE Zifen (zyhhzf1998@163.com)

    DOI:10.3788/gzxb20225109.0910001

    Topics