Laser Journal, Volume. 45, Issue 3, 1(2024)

Research developments in camouflage object detection

ZHANG Dongdong, WANG Chunping, and FU Qiang*
Author Affiliations
  • [in Chinese]
  • show less
    References(55)

    [1] [1] Wang Y , Fang Z , Zheng Y , et al. Dual Attribute Adver- sarial Camouflage toward camouflaged object detection[J] . Defence Technology. 2023 , 22 : 166- 175.

    [2] [2] YAN J N , Le T N , Nguyen K D , et al. Mirrornet : Bio-in- spired camouflaged object segmentation[J] . IEEE Access , 2021 , 9 : 43290-43300.

    [4] [4] Zhang C , Wang K , Bi H B , et al. Camouflaged object de- tection via Neighbor Connection and Hierarchical Informa- tion Transfer[J] . Computer Vision and Image Understand- ing. 2022 , 221 : 103450.

    [5] [5] Mondal A. Camouflaged object detection and tracking : A survey[J] . International Journal of Image and Graphics. 2020 , 20(04) : 2050028.

    [6] [6] Bi H B , Zhang C , Wang K , et al. Rethinking camouflaged object detection : Models and datasets[J] . IEEE Transac- tions on Circuits and Systems for Video Technology. 2021 , 32(9) : 5708-5724.

    [8] [8] Boot W R , Neider M B , Kramer A F. Training and transfer of training in the search for camouflaged targets[J] . Atten- tion , Perception & Psychophysics. 2009 , 71 : 950-963.

    [9] [9] Kavitha C , Rao B P , Govardhan A. An efficient content based image retrieval using color and texture of image sub blocks [ J ] . International Journal of Engineering Science and Technology. 2011 , 3(2) : 1060- 1068.

    [11] [11] Galun M , Sharon E , Basri R , et al. Texture Segmentation by Multiscale Aggregation of Filter Responses and Shape El- ements[ C]//Proceedings Ninth IEEE International Confer- ence on Computer Vision. Nice , France : IEEE , 2003 : 716.

    [12] [12] Bhajantri N U , Nagabhushan P. Camouflage defect identifi- cation : a novel approach[ C]//9th International Conference on Information Technology ( ICIT'06) . Bhubaneswar , Indi- a : IEEE , 2006 :145- 148

    [13] [13] Song L M , Geng W D. A new camouflage texture evaluation method based on WSSIM and nature image features [ C]//2010 International Conference on Multimedia Technology. Ningbo , China : IEEE , 2010 :1-4.

    [14] [14] Lu H M , Wang X C , Liu S Z , et al. The possible mecha- nism underlying visual anti-camouflage : a model and its re- al- time simulation [ J ] . IEEE Transactions On Systems , Man , And Cybernetics - Part A : Systems And Humans. 1999 , 29(3) : 314-318.

    [15] [15] Reichardt W , Egelhaaf M , Guo A. Processing of figure and background motion in the visual system of the fly[J] . Bio- logical cybernetics. 1989 , 61(5) : 327-345.

    [16] [16] Conte D , Foggia P , Percannella G , et al. An algorithm for detection of partially camouflaged people [ C]//2009 Sixth IEEE International Conference on Advanced Video and Sig- nal Based Surveillance. Genova , Italy : IEEE , 2009 :340 - 345.

    [17] [17] Yin J Q , Han Y B , Huo W D , et al. Detection of the mo- bile object with camouflage color under dynamic background based on optical flow [ J ] . Procedia Engineering. 2011 , 15 : 2201-2205.

    [19] [19] Tankus A , Yeshurun Y. Detection of regions of interest and camouflage breaking by direct convexity estimation [ C]// Proceedings 1998 IEEE Workshop on Visual Surveillance. Bombay , India : IEEE , 1998 :42-48.

    [20] [20] Tankus A , Yeshurun Y. Convexity - based visual camou- flage breaking[J] . Computer Vision and Image Understand- ing. 2001 , 82(3) : 208-237.

    [21] [21] Tankus A , Yeshurun Y. Computer vision , camouflage breaking and countershading [ J ] . Philosophical Transac- tions : Biological Sciences. 2009 , 364(1516) : 529-536.

    [22] [22] Pan Y X , Chen Y W , Fu Q , et al. Study on the camou- flaged target detection method based on 3D convexity[J] . Modern Applied Science. 2011 , 5(4) : 152.

    [24] [24] Mittal A , Paragios N. Motion - based background subtrac- tion using adaptive kernel density estimation[ C]//Proceed- ings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington , DC , USA : IEEE , 2004 :II--II.

    [25] [25] Siricharoen P , Aramvith S , Chalidabhongse T H , et al. Robust outdoor human segmentation based on color - based statistical approach and edge combination [ C]//The 2010 International Conference on Green Circuits and Systems.The 2010 International Conference on Green Circuits and Systems : IEEE , 2010 :463-468.

    [26] [26] Liu Z , Huang K Q , Tan T N. Foreground object detection using top- down information based on EM framework[J] . IEEE Transactions on Image Processing. 2012 , 21 ( 9 ) : 4204-4217.

    [27] [27] Kim S. Unsupervised spectral - spatial feature selection - based camouflaged object detection using VNIR hyperspec- tral camera [ J ] . The Scientific World Journal. 2015 , 2015 : 834635.

    [28] [28] Le T , Nguyen T V , Nie Z L , et al. Anabranch network for camouflaged object segmentation[J] . Computer Vision and Image Understanding. 2019 , 184 : 45-56.

    [29] [29] Fan D P , Ji G P , Sun G L , et al. Camouflaged object de- tection[ C]//2020 IEEE/CVF Conference on Computer Vi- sion and Pattern Recognition ( CVPR ) . Seattle , WA , USA : IEEE , 2020 :2777-2787.

    [30] [30] Mei H Y , Ji G P , Wei Z Q , et al. Camouflaged object seg- mentation with distraction mining [ C ]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Nashville , TN , USA : IEEE , 2021 :8772- 8781.

    [31] [31] Fan D P , Ji G P , Cheng M M , et al. Concealed object de- tection[J] . IEEE Transactions on Pattern Analysis and Ma- chine Intelligence. 2021 , 44(10) : 6024-6042.

    [32] [32] Wang K , Bi H B , Zhang Y , et al. D2C- Net : A Dual -Branch Dual - Guidance and Cross - Refine Network forCamouflaged Object Detection[J] . IEEE Transactions on Industrial Electronics. 2021 , 69(5) : 5364-5374.

    [33] [33] Zhu H W , Li P , Xie H R , et al. I can find you! Boundary -guided separated attention network for camouflaged object detection[ C]//Proceedings of the AAAI Conference on Ar- tificial Intelligence. Columbia , Canada : AAAI , 2022 :3608 -3616.

    [34] [34] Pang Y W , Zhao X Q , Xiang T Z , et al. Zoom in and out : A mixed-scale triplet network for camouflaged object detec- tion[ C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) . New Orleans , LA , USA : IEEE , 2022 :2160-2170.

    [35] [35] Lv Y Q , Zhang J , Dai Y C , et al. Simultaneously localize , segment and rank the camouflaged objects [ C ]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Nashville , TN , USA : IEEE , 2021 : 11591- 11601.

    [36] [36] Ren J J , Hu X W , Zhu L , et al. Deep texture-aware fea- tures for camouflaged object detection[J] . IEEE Transac-tions on Circuits and Systems for Video Technology. 2023 , 33(3) : 1157- 1167.

    [37] [37] Ji G P , Fan D P , Chou Y C , et al. Deep gradient learning for efficient camouflaged object detection[J] . Machine In- telligence Research. 2023 , 20(1) : 92- 108.

    [38] [38] Zhai Q , Li X , Yang F , et al. Mutual graph learning for camouflaged object detection [ C]//2021 IEEE/CVF Con- ference on Computer Vision and Pattern Recognition ( CVPR) . Nashville , TN , USA : IEEE , 2021 : 12997 - 13007.

    [39] [39] Kajiura N , Liu H , Satoh S. Improving camouflaged object detection with the uncertainty of pseudo - edge labels[ M] . ACM Multimedia Asia , 2021 , 1-7.

    [40] [40] Zhou T , Zhou Y , Gong C , et al. Feature Aggregation and Propagation Network for Camouflaged Object Detection[J] . IEEE Transactions on Image Processing. 2022 , 31 : 7036- 7047.

    [41] [41] Ji G P , Zhu L , Zhuge M C , et al. Fast camouflaged object detection via edge-based reversible re - calibration network[J] . Pattern Recognition. 2022 , 123 : 108414.

    [42] [42] Zhuge M C , Lu X K , Guo Y Y , et al. CubeNet : X-shape connection for camouflaged object detection [ J ] . Pattern Recognition. 2022 , 127 : 108644.

    [43] [43] Chen T Y , Xiao J , Hu X G , et al. Boundary-guided net- work for camouflaged object detection [ J ] . Knowledge - Based Systems. 2022 , 248 : 108901.

    [44] [44] Sun Y J , Wang S , Chen C L Z , et al. Boundary - guided camouflaged object detection [ J ] . arXiv preprint arXiv : 2207. 00794. 2022.

    [45] [45] Vaswani A , Shazeer N , Parmar N , et al. Attention is all you need [ J ] . Advances in neural information processing systems. 2017 , 30 :1011- 1020.

    [46] [46] Yang F , Zhai Q , Li X , et al. Uncertainty - guided trans- former reasoning for camouflaged object detection [ C ]//2021 IEEE/CVF International Conference on Computer Vi- sion ( ICCV) . Montreal , QC , Canada : IEEE , 2021 :4146- 4155.

    [47] [47] Liu Z Y , Zhang Z L , Tan Y C , et al. Boosting camouflaged object detection with dual - task interactive transformer [ C]//2022 26th International Conference on Pattern Rec- ognition ( ICPR) . Montreal , QC , Canada : IEEE , 2022 : 140- 146.

    [48] [48] Yin B W , Zhang X Y , Hou Q B , et al. CamoFormer : Masked Separable Attention for Camouflaged Object Detec- tion[J] . arXiv preprint arXiv:2212. 06570. 2022.

    [49] [49] Zhang J , Lv Y Q , Xiang M C , et al. Depth confidence-a- ware camouflaged object detection [ J ] . arXiv e - prints.2021 : 2106.

    [50] [50] Zhong Y J , Li B , Tang L , et al. Detecting camouflaged ob- ject in frequency domain[ C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) . New Orleans , LA , USA : IEEE , 2022 :4504-4513.

    [51] [51] Le T N , Cao Y B , Nguyen T C , et al. Camouflaged in- stance segmentation in - the - wild : Dataset , method , and benchmark suite[J] . IEEE Transactions on Image Process- ing. 2021 , 31 : 287-300.

    [52] [52] Cheng X L , Xiong H , Fan D P , et al. Implicit motion han- dling for video camouflaged object detection [ C ]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) . New Orleans , LA , USA : IEEE , 2022 :13864- 13873.

    [53] [53] Shi Z Y , Yang Y X , Hospedales T M , et al. Weakly-Su- pervised Image Annotation and Segmentation with Objects and Attributes[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017 , 39(12) : 2525-2538.

    [54] [54] Jia Q , Yao S L , Liu Y , et al. Segment , Magnify and Reit- erate : Detecting Camouflaged Objects the Hard Way[ C]//2022 IEEE/CVF Conference on Computer Vision and Pat- tern Recognition ( CVPR ) . New Orleans , LA , USA : IEEE , 2022 :4703-4712.

    [55] [55] Hu X B , Fan D P , Qin X B , et al. High-resolution Itera- tive Feedback Network for Camouflaged Object Detection[J] . arXiv preprint arXiv:2203. 11624. 2022.

    [56] [56] Skurowski P L A , Abdulameer H , Blaszczyk J , et al. Ani- mal camouflage analysis : Chameleon database[J] . Unpub- lished manuscript. 2018 , 2(6) : 7.

    [57] [57] Zheng Y F , Zhang X W , Wang F , et al. Detection of peo- ple with camouflage pattern via dense deconvolution network[J] . IEEE Signal Processing Letters. 2018 , 26( 1) : 29 - 33.

    [58] [58] Margolin R , Zelnik - Manor L , Tal A. How to Evaluate Foreground Maps[ C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus , OH , USA : IEEE , 2014 :248-255.

    [59] [59] Fan D P , Cheng M M , Liu Y , et al. Structure- Measure : A New Way to Evaluate Foreground Maps[ C]//2017 IEEE International Conference on Computer Vision ( ICCV ) . Venice , Italy : IEEE , 2017 :4558-4567.

    [60] [60] Perazzi F , Kr?henbühl P , Pritch Y , et al. Saliency filters : Contrast based filtering for salient region detection [ C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence , RI , USA : IEEE , 2012 : 733 - 740

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dongdong, WANG Chunping, FU Qiang. Research developments in camouflage object detection[J]. Laser Journal, 2024, 45(3): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 15, 2023

    Accepted: --

    Published Online: Oct. 15, 2024

    The Author Email: Qiang FU (1418748495@qq.com)

    DOI:10.14016/j.cnki.jgzz.2024.03.001

    Topics