Acta Optica Sinica, Volume. 42, Issue 11, 1134008(2022)

X-Ray Crystal Diffraction Spectrometer: Theory and Application

Miao Li1, Tong Yao1, Xi Wang1, Jun Shi2、*, Feng Wang3, Guohong Yang3, Wanli Shang3, Minxi Wei3, and Ao Sun3
Author Affiliations
  • 1College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China;
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    References(104)

    [1] Wang G C, Yuan Z S[M]. Inertial confinement fusion(2005).

    [2] Wen S H, Ding Y K[M]. Laser inertial confinement fusion diagnostics(2012).

    [3] Yao L, Pu Y D, Wei M X et al. A proof-of-principle experiment demonstrating X-ray fluorescence imaging at the Shenguang-Ⅲ prototype laser facility[J]. Acta Optica Sinica, 40, 0634001(2020).

    [4] Zhou W M, Yu M H, Zhang T K et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).

    [5] Xu C Y[M]. Optics and engineering of synchrotron radiation(2013).

    [6] Li C, Liu M T, Zhang Z Y et al. Method for energy bandwidth measurement of synchrotron radiation focused beam[J]. Acta Optica Sinica, 40, 1934001(2020).

    [7] Renner O, Rosmej F B. Challenges of X-ray spectroscopy in investigations of matter under extreme conditions[J]. Matter and Radiation at Extremes, 4, 024201(2019).

    [8] Friedrich W. Knipping P, von Laue, et al. Interferenz-Erscheinungen bei Ro'ntgenstrahlen Bayerische: Bayerische Akademie der Wissenschaften/[R]. Mathematisch Physikalische Klasse, 303-322(1912).

    [9] Bragg W L. The diffraction of short electromagnetic waves by crystals[J]. Proceedings of the Cambridge Philosophical Society, 17, 43-57(1913).

    [10] Jin G, Zhang C, Li L H et al. Fabrication and performance testing of angel lobster-eye X-ray micro-pore optics[J]. Acta Optica Sinica, 41, 0634001(2021).

    [11] Deng T, Liu F W, Qin D et al. Non-null interferometric test of X-ray cylindrical reflect mirror[J]. Acta Optica Sinica, 42, 0434001(2022).

    [12] Zou Y M, Hutton R, Currell F et al[M]. Handbook for highly charged ion spectroscopic research(2016).

    [13] Jiang S E, Ding Y K, Liu S Y et al. Recent inertial confinement fusion experiments and diagnostic techniques on the Shenguang laser facility[J]. Physics, 39, 531-542(2010).

    [14] Ameh E S. A review of basic crystallography and X-ray diffraction applications[J]. The International Journal of Advanced Manufacturing Technology, 105, 3289-3302(2019).

    [15] Kaganer V M, Petrov I, Samoylova L. X-ray diffraction from strongly bent crystals and spectroscopy of X-ray free-electron laser pulses[J]. Acta Crystallographica. Section A, Foundations and Advances, 76, 55-69(2020).

    [16] Wang F, Jiang S E, Ding Y K et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 5, 035201(2020).

    [17] Mai Z H[M]. X-ray diffraction dynamics-theory and application(2019).

    [18] Pan F, Wang Y H, Chen C[M]. X-ray diffraction technology(2016).

    [19] Zolotoyabko E. Basic concepts of X-ray diffraction[M]. Weinheim: Wiley-VCH(2014).

    [20] Dias D F, Sasaki J M. A study on the limit of application of kinematical theory of X-ray diffraction[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 235, 523-531(2020).

    [21] Powell D R. Review of X-ray crystallography[J]. Journal of Chemical Education, 93, 591-592(2016).

    [22] Darwin C G. The theory of X-ray reflexion. part II[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27, 675-690(1914).

    [23] Wei M X. Preliminary experimental study on quantification of crystal spectrometer[D]. Mianyang: China Academy of Engineering Physics(2006).

    [24] Prins J A. Die reflexion von röntgenstrahlen an absorbierenden idealen kristallen[J]. Zeitschrift Für Physik, 63, 477-493(1930).

    [25] Borie B. The Darwin dynamical theory of X-ray diffraction[J]. Acta Crystallographica, 23, 210-216(1967).

    [26] Ewald P P. Zur begründung der kristalloptik[J]. Annalen Der Physik, 359, 519-556(1917).

    [27] Laue M. Die dynamische theorie der Röntgenstrahlinterferenzen in neuer form[M]. //der Naturwissenschaften S. Ergebnisse der exakten naturwissenschaften. Heidelberg: Springer, 10, 133-158(1931).

    [28] Hu L F. Synchrotron radiation simulation based on geometrical and wave optics[D]. Beijing: Chinese Academy of Sciences(2015).

    [29] Authier A[M]. Dynamical theory of X-ray diffraction(2001).

    [30] Molière G. Quantenmechanische theorie der röntgenstrahlinterferenzen in kristallen I. ableitung und allgemeine diskussion der dynamischen grundgleichungen[J]. Annalen Der Physik, 427, 272-296(1939).

    [31] Kato N. The energy flow of X-rays in an ideally perfect crystal: comparison between theory and experiments[J]. Acta Crystallographica, 13, 349-356(1960).

    [32] White J E. X-ray diffraction by elastically deformed crystals[J]. Journal of Applied Physics, 21, 855-859(1950).

    [33] Egert G, Dachs H. Verwendung gebogener idealkristalle als neutronenmonochromatoren[J]. Journal of Applied Crystallography, 3, 214-220(1970).

    [34] del Rio M S, Perez-Bocanegra N, Shi X B et al. Simulation of X-ray diffraction profiles for bent anisotropic crystals[J]. Journal of Applied Crystallography, 48, 477-491(2015).

    [36] Zachariasen W. Theory of X-ray diffraction in crystals[M]. New York: Dover Publications Inc.(1967).

    [37] Wu M, Kruschwitz C A, Lake P et al. Diffraction properties of cylindrically bent KAP crystals in energy range of 2.3--7.5 keV using synchrotron radiation[J]. Applied Optics, 60, 558-570(2021).

    [38] Polder D, Penning P. Anomalous transmission of X-ray in elastically deformed crystals[J]. Acta Crystallographica, 17, 950-955(1964).

    [39] Balibar F, Chukhovskii F N, Malgrange C. Dynamical X-ray propagation: a theoretical approach to the creation of new wave fields[J]. Acta Crystallographica Section A Foundations of Crystallography, 39, 387-399(1983).

    [40] Schulze C, Chapman D. Pepo: a program for the calculation of the reflectivity of cylindrically bent Laue crystal monochromators[J]. Review of Scientific Instruments, 66, 2220-2223(1995).

    [41] Takagi S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion[J]. Acta Crystallographica, 15, 1311-1312(1962).

    [42] Takagi S. A dynamical theory of diffraction for a distorted crystal[J]. Journal of the Physical Society of Japan, 26, 1239-1253(1969).

    [43] Taupin D. Théorie dynamique de la diffraction des rayons X par les cristaux déformés[J]. Bulletin De La Société Française De Minéralogie et De Cristallographie, 87, 469-511(1964).

    [44] Härtwig J. Hierarchy of dynamical theories of X-ray diffraction for deformed and perfect crystals[J]. Journal of Physics D: Applied Physics, 34, A70-A77(2001).

    [45] del Rio M S, Ferrero C, Mocella V. Computer simulation of bent perfect crystal diffraction profiles[J]. Proceedings of SPIE, 3151, 312-323(1997).

    [46] del Río M S, Dejus R J. XOP v2.4: recent developments of the X-ray optics software toolkit[J]. Proceedings of SPIE, 8141, 814115(2011).

    [47] Yan H F, Li L. X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: a universal approach to modeling[J]. Physical Review B, 89, 014104(2014).

    [48] Honkanen A P, Ferrero C, Guigay J P et al. A finite-element approach to dynamical diffraction problems in reflection geometry[J]. Journal of Applied Crystallography, 51, 514-525(2018).

    [49] Honkanen A P, Monaco G, Huotari S. A computationally efficient method to solve the Takagi-Taupin equations for a large deformed crystal[J]. Journal of Applied Crystallography, 49, 1284-1289(2016).

    [50] Wang Y H, Hu L F, Zhang B B et al. Finite-element simulation for X-ray volume diffractive optics based on the wave optical theory[J]. Optics Express, 28, 34973-34993(2020).

    [51] Koch J A, Landen O L, Barbee T W et al. High-energy X-ray microscopy techniques for laser-fusion plasma research at the national ignition facility[J]. Applied Optics, 37, 1784-1795(1998).

    [52] Zhao Y, Wei M X, Deng B et al. Flat crystal X-ray spectrometer for quantitative spectral measurement in the 2--5 keV region[J]. Chinese Physics Letters, 28, 060701(2011).

    [53] Zhao Y, Yang J M, Zhang J Y et al. Novel method of the wavelength determination of spectral lines with planar crystal spectrometer[J]. Chinese Journal of Lasers, 35, 587-591(2008).

    [54] Yang Y, Xiao J, Lu D et al. A high precision flat crystal spectrometer compatible for ultra-high vacuum light source[J]. Review of Scientific Instruments, 88, 113108(2017).

    [55] Wang R R, Jia G, An H H et al. Band tunable X-ray flat crystal spectrometer for laser-produced plasma spectroscopy measurements[J]. X-Ray Spectrometry, 51, 136-141(2022).

    [56] Bond W L. Precision lattice constant determination[J]. Acta Crystallographica, 13, 814-818(1960).

    [57] Lider V V. Precise determination of crystal lattice parameters[J]. Physics-Uspekhi, 63, 907-928(2020).

    [58] Johann H H. Intense X-ray spectra obtained with concave crystals[J]. Zeitschrift für Physik, 69, 185-206(1931).

    [59] Petrunin A A, Sovestnov A E, Tyunis A V et al. Johann crystal diffraction spectrometer for measuring small chemical shifts of soft X-ray lines[J]. Technical Physics Letters, 35, 73-75(2009).

    [60] Johansson T. New focusing X-ray spectrometer[J]. Zeitschrift für Physik, 82, 507-528(1933).

    [61] von Hámos L. Röntgenspektroskopie und abbildung mittels gekrümmter kristallreflektoren. I. geometrisch-optische betrachtungen[J]. Annalen Der Physik, 409, 716-724(1933).

    [62] Wang E, Beiersdorfer P, Gu M et al. 81(10): 10E329(2010).

    [63] Kieffer J C, Chaker M, Pepin H et al. Monochromatic X-ray imaging of a laser produced plasma[J]. Applied Optics, 28, 4333-4336(1989).

    [64] Sokaras D, Weng T C, Nordlund D et al. A seven-crystal Johann-type hard X-ray spectrometer at the Stanford Synchrotron Radiation Light Source[J]. Review of Scientific Instruments, 84, 053102(2013).

    [65] Belyaev L M, Gil’varg A B. Mikha22lov Y A, et al. High-luminosity X-ray spectrograph with a spherically bent crystal analyzer, designed for laser plasma diagnostics[J]. Soviet Journal of Quantum Electronics, 7, 67-70(1977).

    [66] Liu L F. Study on key technology of X-ray imaging for plasmas based on spherically bent crystal[D]. Chongqing: Chongqing University(2012).

    [67] Liu L F, Xiao S L, Wu Y F et al. Study of X-ray backlight imaging based on spherically bent quartz crystal[J]. Chinese Journal of Lasers, 38, 0815001(2011).

    [68] Honkanen A P, Ollikkala S, Ahopelto T et al. Johann-type laboratory-scale X-ray absorption spectrometer with versatile detection modes[J]. Review of Scientific Instruments, 90, 033107(2019).

    [69] Jahrman E P, Holden W M, Ditter A S et al. Vacuum formed temporary spherically and toroidally bent crystal analyzers for X-ray absorption and X-ray emission spectroscopy[J]. The Review of Scientific Instruments, 90, 013106(2019).

    [70] Jahrman E P, Holden W M, Ditter A S et al. An improved laboratory-based X-ray absorption fine structure and X-ray emission spectrometer for analytical applications in materials chemistry research[J]. The Review of Scientific Instruments, 90, 024106(2019).

    [71] Xin Q Q, Li Y R, Chen L et al. Design and experimental research of four-channel spherically bent crystal imaging system[J]. High Power Laser and Particle Beams, 31, 052001(2019).

    [72] Hell N, Beiersdorfer P, Brown G V et al. Recent enhancements in the performance of the Orion high-resolution X-ray spectrometers[J]. Review of Scientific Instruments, 92, 043507(2021).

    [73] Uschmann I, Fujita K, Niki I et al. Time-resolved ten-channel monochromatic imaging of inertial confinement fusion plasmas[J]. Applied Optics, 39, 5865-5871(2000).

    [74] Schollmeier M S, Geissel M, Shores J E et al. Performance of bent-crystal X-ray microscopes for high energy density physics research[J]. Applied Optics, 54, 5147-5161(2015).

    [75] Schollmeier M S, Loisel G P. Systematic search for spherical crystal X-ray microscopes matching 1--25 keV spectral line sources[J]. Review of Scientific Instruments, 87, 123511(2016).

    [76] Yao T, Li M, Shi J et al. High-resolution focusing diagnosis technology on Ti-target X-ray diffraction using toroidal crystals[J]. Chinese Journal of Lasers, 48, 2103002(2021).

    [77] Jiang C L, Xu J, Mu B Z et al. Four-channel toroidal crystal X-ray imager for laser-produced plasmas[J]. Optics Express, 29, 6133-6146(2021).

    [78] Anklamm L, Schlesiger C, Malzer W et al. A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory[J]. Review of Scientific Instruments, 85, 053110(2014).

    [79] Lu J. Research of X-ray bent crystal spectrometer with uniform dispersion for dense plasmas diagnostics[D]. Chongqing: Chongqing University(2015).

    [80] Shevelko A P, Kasyanov Y S, Yakushev O F et al. Compact focusing von Hamos spectrometer for quantitative X-ray spectroscopy[J]. Review of Scientific Instruments, 73, 3458-3463(2002).

    [81] Abraham B, Nowak S, Weninger C et al. A high-throughput energy-dispersive tender X-ray spectrometer for shot-to-shot sulfur measurements[J]. Journal of Synchrotron Radiation, 26, 629-634(2019).

    [82] Kalinko A, Caliebe W A, Schoch R et al. A von Hamos-type hard X-ray spectrometer at the PETRA III beamline P64[J]. Journal of Synchrotron Radiation, 27, 31-36(2020).

    [83] Rani S S, Lee J H, Kim Y. 200-mm segmented cylindrical figured crystal for von Hamos X-ray spectrometer[J]. Review of Scientific Instruments, 91, 013101(2020).

    [84] Ismail I, Journel L, Vacheresse R et al. A von Hamos spectrometer based on highly annealed pyrolytic graphite crystal in tender X-ray domain[J]. Review of Scientific Instruments, 92, 073104(2021).

    [85] Hall T A. A focusing X-ray crystal spectrograph[J]. Journal of Physics E: Scientific Instruments, 17, 110-112(1984).

    [86] Martinolli E, Koenig M, Boudenne J M et al. Conical crystal spectrograph for high brightness X-ray Kα spectroscopy in subpicosecond laser-solid interaction[J]. Review of Scientific Instruments, 75, 2024-2028(2004).

    [87] Levy A, Dorchies F, Fourment C et al. Double conical crystal X-ray spectrometer for high resolution ultrafast X-ray absorption near-edge spectroscopy of Al K edge[J]. The Review of Scientific Instruments, 81, 063107(2010).

    [88] Pikuz S A, Shelkovenko T A, Mitchell M D et al. 77(10): 10F309(2006).

    [89] Yang Q G, Li Z R, Peng Q X et al. Theoretical calculation and design for cylindrical and conical bent crystal spectrograph[J]. Acta Optica Sinica, 29, 382-387(2009).

    [90] Robledo J I, Pérez C A, Sánchez H J. A compact high-resolution spectrometer based on a segmented conical crystal analyzer[J]. Review of Scientific Instruments, 91, 043105(2020).

    [91] Andiel U, Eidmann K, Pisani F et al. Conical X-ray crystal spectrometer for time integrated and time resolved measurements[J]. Review of Scientific Instruments, 74, 2369-2374(2003).

    [92] Morishita K, Hayashi K, Nakajima K. One-shot spectrometer for several elements using an integrated conical crystal analyzer[J]. The Review of Scientific Instruments, 83, 013112(2012).

    [93] Bitter M, Hill K W, Gao L et al. 87(11): 11E333(2016).

    [94] Shi J, Bitter M, Hill K W et al. Investigation of multi-cone geometry imaging with laser lights[J]. The Review of Scientific Instruments, 88, 123116(2017).

    [95] Nakajima K, Fujiwara K, Pan W et al. Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-crystal lenses[J]. Nature Materials, 4, 47-50(2005).

    [96] Shi J, Yao T, Li M et al. High efficiency X-ray diffraction diagnostic spectrometer with multi-curvature bent crystal[J]. Chinese Optics Letters, 18, 113401(2020).

    [97] Xiao S L, Tang Y L, Xiong X C et al. Experimentation of the X-ray elliptical crystal spectrograph[J]. Optics and Precision Engineering, 12, 415-419(2004).

    [98] Wang R R, An H H, Xie Z Y et al. Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments[J]. High Power Laser Science and Engineering, 6, e3(2018).

    [99] Shi J, Guo Y C, Xiao S L et al. A novel X-ray spectrometer for plasma hot spot diagnosis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 866, 72-75(2017).

    [100] Xia G, Wang G D, Sun Y C et al. Design and resolution analysis of parabolic mirror spectrometer[J]. Proceedings of SPIE, 1046, 104611B(2017).

    [101] Bitter M, Pablant N, Hill K W et al. A new class of focusing crystal shapes for Bragg spectroscopy of small, point-like, X-ray sources in laser produced plasmas[J]. Review of Scientific Instruments, 92, 043531(2021).

    [102] Pablant N A, Bitter M, Efthimion P C et al. Design and expected performance of a variable-radii sinusoidal spiral X-ray spectrometer for the National Ignition Facility[J]. Review of Scientific Instruments, 92, 093904(2021).

    [103] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    [104] Qi D L, Zhang S A, Yang C S et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2, 014003(2020).

    [105] Wang F, Li Y L, Guan Z Y et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 34, 031021(2022).

    Tools

    Get Citation

    Copy Citation Text

    Miao Li, Tong Yao, Xi Wang, Jun Shi, Feng Wang, Guohong Yang, Wanli Shang, Minxi Wei, Ao Sun. X-Ray Crystal Diffraction Spectrometer: Theory and Application[J]. Acta Optica Sinica, 2022, 42(11): 1134008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Jan. 27, 2022

    Accepted: Mar. 3, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Shi Jun (shijun@cqu.edu.cn)

    DOI:10.3788/AOS202242.1134008

    Topics