Journal of Atmospheric and Environmental Optics, Volume. 17, Issue 2, 267(2022)
Arctic sea fog detection using CALIOP and MODIS
[1] [1] Wu D, Hu Y X, Mccormick M P, et al. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations[J]. International Journal of Remote Sensing, 2011, 32(5): 1269-1288.
[2] [2] Zhao J C, Wu D, Zhao Y T. A method for sea fog detection using CALIOP data[J]. Periodical of Ocean University of China, 2017, 47(12): 9-15.
[3] [3] Gu Y, Li P, Liu J, et al. Analysis on engineering geological survey of Arctic submarine cable routing[J]. Ocean Development and Management, 2020, 37(1): 10-14.
[4] [4] Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J]. Weather and Forecasting, 1995, 10(3): 606-619.
[5] [5] Koracin D, Dorman C E, Lewis J M, et al. Marine fog: A review[J]. Atmospheric Research, 2014, 143: 142-175.
[6] [6] Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES-8-9 3.9 μm data[J]. Weather and Forecasting, 1997, 12(3): 664-677.
[7] [7] Zhang S P, Yi L. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas[J]. Pure and Applied Geophysics, 2013, 170(11): 1931-1944.
[8] [8] Yi L, Li K F, Chen X Y, et al. Arctic fog detection using infrared spectral measurements[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(8): 1643-1656.
[9] [9] Wang Z, Teng J, Cai W, et al. Yellow sea fog extraction method based on GOCI image[J]. Marine Environmental Science, 2018, 37(6): 941-946.
[10] [10] Heo K Y, Park S, Ha K. J, et al. Algorithm for sea fog monitoring with the use of information technologies[J]. Meteorological Applications, 2014, 2(21): 350-359.
[11] [11] Lee J, Chung C, Ou M. Fog detection using geostationary satellite data: Temporally continuous algorithm[J]. Asia-Pacific Journal of Atmospheric Sciences, 2011, 47(2): 113-122.
[12] [12] Yi L, Thies B, Zhang S P, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection[J]. Remote Sensing, 2016, 8(1): 8.
[13] [13] Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection—A feasibility study[J]. Atmospheric Research, 2015, 151: 212-223.
[14] [14] Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-A feasibility study[J]. Weather and Forecasting, 2005, 20(6): 989-1005.
[15] [15] Marchand R, Ackerman T, Smyth M, et al. A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS[J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D16): D16206.
[16] [16] Weisz E, Li J, Menzel W P, et al. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals[J]. Geophysical Research Letters, 2007, 34(17) : L17811.
[17] [17] Gultepe I, Pagowski M, Reid J. A satellite-based fog detection scheme using screen air temperature[J]. Weather and Forecasting, 2007, 22(3): 444-456.
[18] [18] Hakansson N, Adok C, Thoss A, et al. Neural network cloud top pressure and height for MODIS[J]. Atmospheric Measurement Techniques, 2018, 11(5): 3177-3196.
[19] [19] Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing[J]. Atmospheric Measurement Techniques, 2014, 7(10): 3233-3246.
[20] [20] Meng H, Yang Z, Guo H T. Research and analysis on cloud top height Inversion technology based on neural network[J]. Journal of Jinling Institute of Technology, 2019, 35(2): 34-39.
[21] [21] Daegeun S, Kim J H. A new application of unsupervised learning to nighttime sea fog detection[J]. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54(4): 527-544.
[22] [22] Zhu C Y, Wang J H, Liu S W, et al. Sea fog detection using U-Net deep learning model based on MODIS data[J]. 10th Workshop On Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019: 1-5.
[23] [23] Liu S, Yi L, Zhang S, P, et al. A study of daytime sea fog retrieval over the Yellow Sea based on fully convolutional networks[J]. Transactions of Oceanology and Limnology, 2019, 6: 13-22.
[24] [24] Mcgill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D20): D20201.
[25] [25] Liu Z. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data[J]. Journal of Geophysical Research, 2004, 109(D15): D15202.
[26] [26] Wu D, Lu B, Zhang T C, et al. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 88-94.
[27] [27] Wei S X. Application of CALIOP in MODIS Based Sea Fog Detection Abstract[D]. Qingdao: Ocean University of China, 2013.
[28] [28] Zhang P, Wu D. Daytime sea fog detection method using Himawari-8 data[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(3): 211-220.
[30] [30] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 448-456.
Get Citation
Copy Citation Text
CHEN Biao, WU Dong. Arctic sea fog detection using CALIOP and MODIS[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267
Category:
Received: Jan. 2, 2021
Accepted: --
Published Online: Jul. 22, 2022
The Author Email: Biao CHEN (chenbiao@stu.ouc.edu.cn)