Journal of Innovative Optical Health Sciences, Volume. 14, Issue 5, 2130004(2021)

The Application of Inorganic Optical Nanoprobes in Bacterial Infection

Linyu Ding1...2, Lai Jiang1,2,*, and Gang Liu12 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health Xiamen University, Xiamen, Fujian 361102, P. R. China
  • 2Center for Molecular Imaging andTranslational Medicine,School of Public Health,Xiamen University Xiamen,Fujian 361102, P. R. China
  • show less
    References(86)

    [1] [1] D. E. Bloom, D. Cadarette, "Infectious disease threats in the twenty-first century: Strengthening the global response," Front. Immunol. 10, 549 (2019).

    [2] [2] D. Puri, Y. B. Nisar, A. Tshefu, A. L. Longombe, F. Esamai, I. Marete, A. I. Ayede, E. A. Adejuyigbe, R. D. Wammanda, S. A. Qazi, R. Bahl, "Prevalence of clinical signs of possible serious bacterial infection and mortality associated with them from population- based surveillance of young infants from birth to 2 months of age," PLoS ONE 16(2), e0247457 (2021).

    [3] [3] C. A. Devaux, O. Mediannikov, H. Medkour, D. Raoult, "Infectious disease risk across the growing human-non human primate interface: A review of the evidence," Front. Public Health 7, 305 (2019).

    [4] [4] J. Munguia, V. Nizet, "Pharmacological targeting of the host–pathogen interaction: Alternatives to classical antibiotics to combat drug-resistant superbugs," Trends Pharmacol. Sci. 38(5), 473–488 (2017).

    [5] [5] A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V. M. Rotello, "Combatting antibiotic-resistant bacteria using nanomaterials," Chem. Soc. Rev. 48(2), 415– 427 (2019).

    [6] [6] E. Christaki, M. Marcou, A. Tofarides, "Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence," J. Mol. Evol. 88(1), 26–40 (2020).

    [7] [7] E. Peterson, P. Kaur, "Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens," Front. Microbiol. 9, 2928 (2018).

    [8] [8] A. J. M. Loonen, P. F. G. Wol?s, C. A. Bruggeman, A. J. C. van den Brule, "Developments for improved diagnosis of bacterial bloodstream infections," Eur. J. Clin. Microbiol. Infect. Dis. 33(10), 1687–1702 (2014).

    [9] [9] Z. A. Khan, M. F. Siddiqui, S. Park, "Current and emerging methods of antibiotic susceptibility testing," Diagnostics (Basel) 9(2), 49 (2019).

    [10] [10] Y. Ju, B. Dong, J. Yu, Y. Hou, "Inherent multifunctional inorganic nanomaterials for imagingguided cancer therapy," Nano Today 26, 108–122 (2019).

    [11] [11] J. Li, K. Pu, "Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation," Chem. Soc. Rev. 48(1), 38–71 (2019).

    [12] [12] V. Perumal, P. M. Sivakumar, A. Zarrabi, S. Muthupandian, S. Vijayaraghavalu, K. Sahoo, A. Das, S. Das, S. S. Payyappilly, S. Das, "Near infrared polymeric nanoparticle based optical imaging in cancer diagnosis," J. Photochem. Photobiol. B, Biol. 199, 111630 (2019).

    [13] [13] L. Sun, J. Zhao, Z. Ouyang, D. Zeng, "SPION-GOx conjugate for imaging guided cancer therapy," J. Nucl. Med. 60(suppl. 1), 1316 (2019).

    [14] [14] A. S. S. Yulia, S. Maklygina, T. A. Savelieva, G. V. Pavlova, I. V. Chekhonin, O. I. Gurina, A. A. Chernysheva, S. A. Cherepanov, V. B. Loschenov, "Study of possibility of cell recognition in brain tumors," Front. Opt-oelectron. 13(4), 371–380 (2020).

    [15] [15] H. R. Salinas, D. L. Miyasato, O. E. Eremina, R. Perez, K. L. Gonzalez, A. T. Czaja, S. Burkitt, A. Aron, A. Fernando, L. S. Ojeda, K. N. Larson, A. W. Mohamed, J. L. Campbell, B. A. Goins, C. Zavaleta, "A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection," Biomater. Sci. 9(2), 482– 495 (2021).

    [16] [16] A. J. Wilson, D. Devasia, P. K. Jain, "Nanoscale optical imaging in chemistry," Chem. Soc. Rev. 49(16), 6087–6112 (2020).

    [17] [17] J.-N. May, S. K. Golombek, M. Baues, A. Dasgupta, N. Drude, A. Rix, D. Rommel, S. von Stillfried, L. Appold, R. Pola, M. Pechar, L. van Bloois, G. Storm, A. J. C. Kuehne, F. Gremse, B. Theek, F. Kiessling, T. Lammers, "Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation," Theranostics 10(4), 1948–1959 (2020).

    [18] [18] D. V. Yakovlev, D. S. Farrakhova, A. A. Shiryaev, K. T. Efendiev, M. V. Loschenov, L. M. Amirkhanova, D. O. Kornev, V. V. Levkin, I. V. Reshetov, V. B. Loschenov, "New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods," Front. Optoelectron. 13(4), 352–359 (2020).

    [19] [19] Y. Wan, L. Zheng, Y. Sun, D. Zhang, "Multifunctional semiconducting polymer dots for imaging, detection, and photo-killing of bacteria," J. Mater. Chem. B 2(30), 4818–4825 (2014).

    [20] [20] W. Wu, D. Mao, X. Cai, Y. Duan, F. Hu, D. Kong, B. Liu, "ONOO and ClO responsive organic nanoparticles for specific in vivo image-guided photodynamic bacterial ablation," Chem. Mater. 30(11), 3867–3873 (2018).

    [21] [21] A. Panigrahi, V. N. Are, S. Jain, D. Nayak, S. Giri, T. K. Sarma, "Cationic organic nanoaggregates as AIE luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application," ACS Appl. Mater. Interfaces 12(5), 5389–5402 (2020).

    [22] [22] T. Gao, H. Zeng, H. Xu, F. Gao, W. Li, S. Zhang, Y. Liu, G. Luo, M. Li, D. Jiang, Z. Chen, Y. Wu, W. Wang, W. Zeng, "Novel self-assembled organic nanoprobe for molecular imaging and treatment of Gram-positive bacterial infection," Theranostics 8(7), 1911–1922 (2018).

    [23] [23] M. M. Welling, A. W. Hensbergen, A. Bunschoten, A. H. Velders, M. Roestenberg, F. W. B. van Leeuwen, "An update on radiotracer development for molecular imaging of bacterial infections," Clin. Transl. Imaging 7(2), 105–124 (2019).

    [24] [24] A. A. Ordonez, M. A. Sellmyer, G. Gowrishankar, C. A. Ruiz-Bedoya, E. W. Tucker, C. J. Palestro, D. A. Hammoud, S. K. Jain, "Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation," Sci. Transl. Med. 11(508), eaax8251 (2019).

    [25] [25] S. Dinarelli, M. Girasole, S. Kasas, G. Longo, "Nanotools and molecular techniques to rapidly identify and fight bacterial infections," J. Microbiol. Methods 138, 72–81 (2017).

    [26] [26] B. Mills, M. Bradley, K. Dhaliwal, "Optical imaging of bacterial infections," Clin. Transl. Imaging 4(3), 163–174 (2016).

    [27] [27] X. Huang, Y. Zhou, C. M. Woo, Y. Pan, L. Nie, P. Lai, "Multifunctional layered black phosphorenebased nanoplatform for disease diagnosis and treatment: a review," Front. Optoelectron. 13(4), 327–351 (2020).

    [28] [28] V. R. Remya, V. Prajitha, J. S. George, K. P. Jibin, S. Thomas, Quantum dots: A brief introduction, Nanoscale Processing: Macro and Nano Technologies, S. Thomas, P. Balakrishnan, Eds., pp. 181– 196, Elsevier, Amsterdam (2021).

    [29] [29] Z. Wang, T. Hu, R. Liang, M. Wei, "Application of zero-dimensional nanomaterials in biosensing," Front. Chem. 8, 320 (2020).

    [30] [30] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian, "Biological applications of quantum dots," Biomaterials 28(31), 4717–4732 (2007).

    [31] [31] U. Bad?ll?, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, S. A. Ozkan, "Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery," TrAC Trends Anal. Chem. 131, 116013 (2020).

    [32] [32] H. M. E. Azzazy, M. M. H. Mansour, S. C. Kazmierczak, "From diagnostics to therapy: Prospects of quantum dots," Clin. Biochem. 40(13), 917–927 (2007).

    [33] [33] H. Wang, C. Sun, X. Chen, Y. Zhang, V. L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W. W. Yu, "Excitation wavelength independent visible color emission of carbon dots," Nanoscale 9(5), 1909– 1915 (2017).

    [34] [34] M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science 281(5385), 2013– 2016 (1998).

    [35] [35] J. Yu, J. Su, J. Zhang, X. Wei, A. Guo, "CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7," RSC Adv. 7(29), 17819–17823 (2017).

    [36] [36] L. Xue, L. Zheng, H. Zhang, X. Jin, J. Lin, "An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria," Sens. Actuators B, Chem. 265, 318–325 (2018).

    [37] [37] H. Geng, Y. Qiao, N. Jiang, C. Li, X. Zhu, W. Li, Q. Cai, "Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging," Anal. Bioanal. Chem. 412(30), 8379–8389 (2020).

    [38] [38] C. Yan, C. Wang, T. Hou, P. Guan, Y. Qiao, L. Guo, Y. Teng, X. Hu, H. Wu, "Lasting tracking and rapid discrimination of live Gram-positive bacteria by peptidoglycan-targeting carbon quantum dots," ACS Appl. Mater. Interfaces 13(1), 1277–1287 (2021).

    [39] [39] L. Zhang, L. Liu, J. Wang, M. Niu, C. Zhang, S. Yu, Y. Yang, "Functionalized silver nanoparticles with graphene quantum dots shell layer for effective antibacterial action," J. Nanoparticle Res. 22(5), 124 (2020).

    [40] [40] G. A. Pang, J. Laufer, R. Niessner, C. Haisch, "Photoacoustic signal generation in gold nanospheres in aqueous solution: Signal generation enhancement and particle diameter effects," J. Phys. Chem. C 120(48), 27646–27656 (2016).

    [41] [41] Z. Wang, L. Chen, Z. Chu, C. Huang, Y. Huang, N. Jia, "Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging," Mater. Sci. Eng. C 89, 106–118 (2018).

    [42] [42] W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong, L. Luo, Q. Li, C. Zhu, J. Yang, Y. Lou, Y. Du, J. You, "Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic–photothermal therapy platform that inhibits tumor growth and metastasis," ACS Appl. Mater. Interfaces 9(4), 3354–3367 (2017).

    [43] [43] L. An, Y. Wang, Q. Tian, S. Yang, "Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy," Materials (Basel) 10(12), 1372 (2017).

    [44] [44] Y.-S. Chen, Y. Zhao, S. J. Yoon, S. S. Gambhir, S. Emelianov, "Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window," Nat. Nanotechnol. 14(5), 465–472 (2019).

    [45] [45] O. B. Knights, S. Ye, N. Ingram, S. Freear, J. R. McLaughlan, "Optimising gold nanorods for photoacoustic imaging in vitro," Nanoscale Adv. 1(4), 1472–1481 (2019).

    [46] [46] F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, R. Pini, "A robust design for cellular vehicles of gold nanorods for multimodal imaging," Adv. Funct. Mater. 26(39), 7178–7185 (2016).

    [47] [47] B. Pang, X. Yang, Y. Xia, "Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics," Nanomedicine (Lond.) 11(13), 1715–1728 (2016).

    [48] [48] X. Xu, Y. Chong, X. Liu, H. Fu, C. Yu, J. Huang, Z. Zhang, "Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/ photodynamic/photothermal synergistic therapy," Acta Biomater. 84, 328–338 (2019).

    [49] [49] S. Raveendran, H.-T. Lim, T. Maekawa, M. Vadakke Matham, D. Sakthi Kumar, "Gold nanocages entering into the realm of high-contrast photoacoustic ocular imaging," Nanoscale 10(29), 13959–13968 (2018).

    [50] [50] Y. Liu, H. Yuan, A. Fales, J. Register, T. Vo-Dinh, "Multifunctional gold nanostars for molecular imaging and cancer therapy," Front. Chem. 3, 51 (2015).

    [51] [51] F. Xia, J. Niu, Y. Hong, C. Li, W. Cao, L. Wang, W. Hou, Y. Liu, D. Cui, "Matrix metallopeptidase 2 targeted delivery of gold nanostars decorated with IR-780 iodide for dual-modal imaging and enhanced photothermal/photodynamic therapy," Acta Biomater. 89, 289–299 (2019).

    [52] [52] L. Zhang, X.-Q. Yang, J.-S. Wei, X. Li, H. Wang, Y.-D. Zhao, "Intelligent gold nanostars for in vivo CT imaging and catalase-enhanced synergistic photodynamic & photothermal tumor therapy," Theranostics 9(19), 5424–5442 (2019).

    [53] [53] C. Song, F. Li, X. Guo, W. Chen, C. Dong, J. Zhang, J. Zhang, L. Wang, "Gold nanostars for cancer celltargeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows," J. Mater. Chem. B 7(12), 2001–2008 (2019).

    [54] [54] W. Shang, C. Zeng, Y. Du, H. Hui, X. Liang, C. Chi, K. Wang, Z. Wang, J. Tian, "Core–shell gold nanorod@metal–organic framework nanoprobes for multimodality diagnosis of glioma," Adv. Mater. 29(3), 1604381 (2017).

    [55] [55] Y. Chang, L. He, Z. Li, L. Zeng, Z. Song, P. Li, L. Chan, Y. You, X.-F. Yu, P. K. Chu, T. Chen, "Designing core–shell gold and selenium nanocomposites for cancer radiochemotherapy," ACS Nano 11(5), 4848–4858 (2017).

    [56] [56] L. R. Holt, B. J. Plowman, N. P. Young, K. Tschulik, R. G. Compton, "The electrochemical characterization of single core–shell nanoparticles," Angew. Chem., Int. Ed. 55(1), 397–400 (2016).

    [57] [57] Y. Wu, M. R. K. Ali, K. Chen, N. Fang, M. A. El- Sayed, "Gold nanoparticles in biological optical imaging," Nano Today 24, 120–140 (2019).

    [58] [58] J. Lü, Y. Yang, J. Gao, H. Duan, C. Lü, "Thermoresponsive amphiphilic block copolymerstablilized gold nanoparticles: Synthesis and high catalytic properties," Langmuir 34(28), 8205–8214 (2018).

    [59] [59] Y. Zhao, Y. Huang, H. Zhu, Q. Zhu, Y. Xia, "Threein- one: Sensing, self-assembly, and cascade catalysis of Cyclodextrin modified gold nanoparticles," J. Am. Chem. Soc. 138(51), 16645–16654 (2016).

    [60] [60] W. Jang, J. Yun, L. Ludwig, S. G. Jang, J. Y. Bae, H. Byun, J.-H. Kim, "Comparative catalytic properties of supported and encapsulated gold nanoparticles in homocoupling reactions," Front. Chem. 8, 834 (2020).

    [61] [61] B. Jin, S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, T. J. Lu, "Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection," Biosens. Bioelectron. 90, 525–533 (2017).

    [62] [62] N. Elahi, M. Kamali, M. H. Baghersad, B. Amini, "A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp," Mater. Sci. Eng. C 105, 110113 (2019).

    [63] [63] S. Zhang, X. Tang, H. Zheng, D. Wang, Z. Xie, W. Ding, X. Zheng, "Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment," J. Hazard. Mater. 407, 124389 (2021).

    [64] [64] X. Du, W. Wang, C. Wu, B. Jia, W. Li, L. Qiu, P. Jiang, J. Wang, Y.-Q. Li, "Enzyme-responsive turn-on nanoprobes for in situ fluorescence imaging and localized photothermal treatment of multidrugresistant bacterial infections," J. Mater. Chem. B 8(33), 7403–7412 (2020).

    [65] [65] C. Zhang, D.-T. Shi, K.-C. Yan, A. C. Sedgwick, G.- R. Chen, X.-P. He, T. D. James, B. Ye, X.-L. Hu, D. Chen, "A glycoconjugate-based gold nanoparticle approach for the targeted treatment of Pseudomonas aeruginosabiofilms," Nanoscale 12(45), 23234– 23240 (2020).

    [66] [66] Z. Hao, X. Lin, J. Li, Y. Yin, X. Gao, S. Wang, Y. Liu, "Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation," Biosens. Bioelectron. 173, 112789 (2021).

    [67] [67] K. Kostarelos, A. Bianco, M. Prato, "Promises, facts and challenges for carbon nanotubes in imaging and therapeutics," Nat. Nanotechnol. 4(10), 627–633 (2009).

    [68] [68] H. Gong, R. Peng, Z. Liu, "Carbon nanotubes for biomedical imaging: The recent advances," Adv. Drug Deliv. Rev. 65(15), 1951–1963 (2013).

    [69] [69] S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, C. Dekker, "Two-dimensional imaging of electronic wavefunctions in carbon nanotubes," Nature 412(6847), 617–620 (2001).

    [70] [70] K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima, "Imaging active topological defects in carbon nanotubes," Nat. Nanotechnol. 2(6), 358–360 (2007).

    [71] [71] Z. Liu, K. Yang, S.-T. Lee, "Single-walled carbon nanotubes in biomedical imaging," J. Mater. Chem. 21(3), 586–598 (2011).

    [72] [72] A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, M. Welland, "Direct imaging of singlewalled carbon nanotubes in cells," Nat. Nanotechnol. 2(11), 713–717 (2007).

    [73] [73] J. Lefebvre, D. G. Austing, J. Bond, P. Finnie, "Photoluminescence imaging of suspended singlewalled carbon nanotubes," Nano Lett. 6(8), 1603– 1608 (2006).

    [74] [74] J. Pan, F. Li, J. H. Choi, "Single-walled carbon nanotubes as optical probes for bio-sensing and imaging," J. Mater. Chem. B 5(32), 6511–6522 (2017).

    [75] [75] N. M. Bardhan, D. Ghosh, A. M. Belcher, "Carbon nanotubes as in vivo bacterial probes," Nat. Commun. 5(1), 4918 (2014).

    [76] [76] J. M. Hicks, R. Halkerston, N. Silman, S. K. Jackson, J. W. Aylott, F. J. Rawson, "Real-time bacterial detection with an intracellular ROS sensing platform," Biosens. Bioelectron. 141, 111430 (2019).

    [77] [77] A. Khazi-Syed, M. Hasan, E. Campbell, R. Gonzalez- Rodriguez, A. J. N. Naumov, "Single-walled carbon nanotube-assisted antibiotic delivery and imaging in S. epidermidis strains addressing antibiotic resistance," Nanomaterials (Basel) 9(12), 1685 (2019).

    [78] [78] J. Della Rocca, D. Liu, W. Lin, "Nanoscale metal– organic frameworks for biomedical imaging and drug delivery," Acc. Chem. Res. 44(10), 957–968 (2011).

    [79] [79] K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, "Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications," Adv. Mater. 30(37), 1707634 (2018).

    [80] [80] S. E. Miller, M. H. Teplensky, P. Z. Moghadam, D. Fairen-Jimenez, "Metal-organic frameworks as biosensors for luminescence-based detection and imaging," Interface Focus 6(4), 20160027 (2016).

    [81] [81] W. Cai, H. Gao, C. Chu, X. Wang, J. Wang, P. Zhang, G. Lin, W. Li, G. Liu, X. Chen, "Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy," ACS Appl. Mater. Interfaces 9(3), 2040– 2051 (2017).

    [82] [82] X. Gao, R. Cui, G. Ji, Z. Liu, "Size and surface controllable metal–organic frameworks (MOFs) for fluorescence imaging and cancer therapy," Nanoscale 10(13), 6205–6211 (2018).

    [83] [83] A. Gupta, S. K. Bhardwaj, A. L. Sharma, K.-H. Kim, A. Deep, "Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite," Environ. Res. 171, 395–402 (2019).

    [84] [84] W. Qi, L. Zheng, S. Wang, F. Huang, Y. Liu, H. Jiang, J. Lin, "A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi," Biosens. Bioelectron. 178, 113020 (2021).

    [85] [85] X. Pang, Q. Xiao, Y. Cheng, E. Ren, L. Lian, Y. Zhang, H. Gao, X. Wang, W. Leung, X. Chen, G. Liu, C. Xu, "Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections," ACS Nano 13(2), 2427–2438 (2019).

    [86] [86] X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren, C. Liu, Y. Zhang, J. Zhu, X. Chen, G. Liu, "Sonoimmunotherapeutic nanocapturer to combat multidrug- resistant bacterial infections," Adv. Mater. 31(35), e1902530 (2019).

    Tools

    Get Citation

    Copy Citation Text

    Linyu Ding, Lai Jiang, Gang Liu. The Application of Inorganic Optical Nanoprobes in Bacterial Infection[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2130004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 30, 2021

    Accepted: Jun. 6, 2021

    Published Online: Dec. 6, 2021

    The Author Email: Jiang Lai (laijiang@xmu.edu)

    DOI:10.1142/s1793545821300044

    Topics