Acta Photonica Sinica, Volume. 54, Issue 2, 0254111(2025)

Correction of Measurement Errors of Star Sensors in Orbit

Yanqing WANG... Jinfeng ZHONG, Weifeng DU, Yongkang WU, He JIN* and Xunjiang ZHENG |Show fewer author(s)
Author Affiliations
  • Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China
  • show less
    Figures & Tables(12)
    Composition of random errors in star sensors
    Composition of thermal deformation error
    Composition of aberration error
    Error diagram of star sensor
    Outline drawing and temperature field distribution of the light shield
    Bore sight thermal drift of star sensor in orbit
    Before and after correction of aberration
    • Table 1. Key technical indicators of thermal stability test system

      View table
      View in Article

      Table 1. Key technical indicators of thermal stability test system

      Error itemsError valuePosition error/mProportionNotes
      GNSS positioning error0.1 m0.140.02%Dual band dual-mode GNSS
      Random error in attitude measurement1.0″3.4312.30%NEA of the star sensor
      Low frequency error in attitude measurement1.0″3.4312.30%LSFE of the star sensor
      Thermal deformation between the star sensor and the cameraStar sensor bracket1.2″8.2370.81%Star sensors and cameras and precise temperature control
      Bracket relative to the camera reference
      Star sensor sight pointing1.2″
      Satellite platform jitter attitude error0.6″2.064.44%Attitude stability
      Time synchronization error20.0 μs0.140.02%Hardware pulse
      Residual calibration0.3 pix0.210.04%Camera internal orientation elements
      Stability0.3 pix0.210.04%
      Total accuracy9.78100%The root mean square of the 10 error items mentioned above
    • Table 2. Optimal statistical table of detection parameters

      View table
      View in Article

      Table 2. Optimal statistical table of detection parameters

      ParameterMean XMean YOpt XOpt YImprove XImprove Y
      Exposure time0.012 60.016 80.011 50.014 88.73%11.90%
      ADC_gain0.010 20.007 70.009 30.007 38.82%5.19%
      PGA_gain0.010 50.009 20.010 80.008 9-2.86%3.26%
      Ramp0.010 90.014 80.011 30.012 5-3.67%15.54%
      Offset0.009 60.009 50.008 80.008 38.33%12.63%
    • Table 3. The statistical of the influence of dynamic weight algorithm on the precision of star sensor

      View table
      View in Article

      Table 3. The statistical of the influence of dynamic weight algorithm on the precision of star sensor

      Test itemsFixed weight algorithmDynamic weight algorithmAccuracy improvement

      Noise equivalent angle

      (NEA, 3σ

      X-axis2.01″1.08″46.27%
      Y-axis2.07″0.99″52.17%
      Z-axis19.08″10.09″42.87%
    • Table 4. Simulation result of sight thermal drift of star sensor

      View table
      View in Article

      Table 4. Simulation result of sight thermal drift of star sensor

      Technical statusSurface temperature/(″/℃)Baffle temperature/(″/℃)
      Magnesium alloy

      X direction:1.82

      Y direction:0.31

      X direction:0.01

      Y direction:0.19

      Silicon carbide

      X direction:1.32

      Y direction:0.17

      X direction:0.02

      Y direction:0.14

      Silicon carbide +weight reduction slot filling

      X direction:0.65

      Y direction:0.16

      X direction:0.14

      Y direction:0.17

      Silicon carbide +weight reduction slot filling+lens 4 feet

      X direction:0.09

      Y direction:0.18

      X direction:0.15

      Y direction:0.15

    • Table 5. Comparison of bore sight thermal drift between simulation and test

      View table
      View in Article

      Table 5. Comparison of bore sight thermal drift between simulation and test

      Technical statusDirectionSimulation(″/℃)Thermal stability test(″/℃)
      Magnesium alloyX1.821.03
      Y0.31-0.14
      Silicon carbide+weight reduction slot filling+lens 4 feetX0.09-0.12
      Y0.180.12
    Tools

    Get Citation

    Copy Citation Text

    Yanqing WANG, Jinfeng ZHONG, Weifeng DU, Yongkang WU, He JIN, Xunjiang ZHENG. Correction of Measurement Errors of Star Sensors in Orbit[J]. Acta Photonica Sinica, 2025, 54(2): 0254111

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Precise Beam Pointing for Space Gravitational Wave Detection

    Received: Aug. 1, 2024

    Accepted: Oct. 23, 2024

    Published Online: Mar. 25, 2025

    The Author Email: JIN He (wangyanqing803@aliyun.com)

    DOI:10.3788/gzxb20255402.0254111

    Topics