Infrared and Laser Engineering, Volume. 53, Issue 5, 20240086(2024)

Aircraft localization method based on hierarchical rotation matching of infrared images

Qingge Li, Xiaogang Yang, Ruitao Lu, Jiwei Fan, Bin Tang, Zhenyu Zhang, Siyu Wang, and Shuang Su
Author Affiliations
  • Missile Engineering Institute, PLA Rocket Force University of Engineering, Xi'an 710025, China
  • show less
    Figures & Tables(18)
    Comparison of night vision IRI (a) and VI (b)
    Framework of aircraft visual localization algorithm
    Structure of the RBN-SuperPoint model
    Example of training samples
    Loss curve of RBN-SuperPoint
    Structure diagram of the L-LightGlue model
    Structure of the linear attention
    Loss curve of L-LightGlue
    Examples of IRI testing dataset. (a) Daytime scene 1; (b) Daytime scene 2; (c) Night scene 3
    Comparison of feature extraction results. (a) Daytime scene 1; (b) Daytime scene 2; (c) Night scene 3
    Comparison of the different matching algorithms. (a) Daytime scene 1; (b) Daytime scene 2; (c) Night scene 3
    Comparison of matching algorithms under different imaging modes
    Comparison of positioning results using different algorithms
    Comparison of aircraft positioning results
    • Table 1. Process of hierarchical rotation matching

      View table
      View in Article

      Table 1. Process of hierarchical rotation matching

      Algorithm 1: Hierarchical rotation matching algorithm
      Input: Image A and image B
      Output: Location of the center of image B in image A
      1) RBN-SuperPoint extracting feature points:
        Image A$ \to $$ {d^A} $, ${ {{p} }^A}$; image B$ \to $$ {d^B} $, $ {p^B} $
      2) L-LightGlue adaptive matching:
      ${f^A} = {\rm{fusion}}({d^A},{PE} ({p^A}))$; ${f^B} = {\rm{fusion}}({d^B}{\text{,PE} }({p^B}))$
      ② Self-attention: ${ {\boldsymbol{\hat f} }^A} = {{\rm{Self}}} ({ {f} }_i^A,{ {f} }_j^A)$, ${ {\boldsymbol{\hat f} }^B} = {{\rm{Self}}} ({ {f} }_i^B,{ {f} }_j^B)$
        Cross-attention: ${ {\boldsymbol{\tilde f} }^{AB} } = {{\rm{Cross}}} ({\boldsymbol{\hat f} }_i^A,{\boldsymbol{\hat f} }_j^B)$
      ③ Confidence classifier: if $ \left( {\dfrac{1}{{N + M}}\displaystyle\sum\limits_{i \in \left\{ {A,B} \right\}} {\left[\kern-0.15 em\left[ {{c_i} > {\lambda _l}} \right]\kern-0.15 em\right]} } \right) > \alpha $
           to step ④
        Else:
           pruning and to step ②
      ④ Optimal matching:
       $ {{\boldsymbol{P}}_{ij}} = \sigma _i^A\sigma _j^B\mathop {{{\mathrm{Softmax}}} }\limits_{k \in A} {({{\boldsymbol{S}}_{kj}})_i}\mathop {{{\mathrm{Softmax}}} }\limits_{k \in B} {({{\boldsymbol{S}}_{ik}})_j} $
       Record the matched pairs: ${ {\boldsymbol{P} }_{AB} } = {\rm{append}}({ {\boldsymbol{P} }_{ij} } > \tau )$
      3) ${{\boldsymbol{P}}_{AB}}$$ \to $${{\boldsymbol{H}}_1}$, image B rotation: ${\boldsymbol{C}} = {{\boldsymbol{H}}_1}{\boldsymbol{B}}$
      4) Image A and C repeat step (2) to get ${{\boldsymbol{P}}_{AC}}$
      5) Feature points rotation: ${{\boldsymbol{P'}}_{AB}} = {{\boldsymbol{H}}_1}^{ - 1}{{\boldsymbol{P}}_{AC}}$, ${{\boldsymbol{P'}}_{AB}}$$ \to $${{\boldsymbol{H}}_2}$
      6) Corresponding points in image A: $ Po{s^A} = {{\boldsymbol{H}}_2}{\boldsymbol{x}}_{{\mathrm{center}}}^B $
    • Table 2. Performance comparison of feature point extraction algorithms

      View table
      View in Article

      Table 2. Performance comparison of feature point extraction algorithms

      AlgorithmsScene 1Scene 2Scene 3
      ${p^A}$${p^B}$${p^A}$${p^B}$${p^A}$${p^B}$
      SIFT463481804740410285
      SURF2922329116081571904639
      ORB254274589628554405
      SuperPoint12861381543522424744
      RBN-SuperPoint320934622542231113751124
    • Table 3. Performance comparison of matching algorithms

      View table
      View in Article

      Table 3. Performance comparison of matching algorithms

      AlgorithmsScenes${N_{{\rm{all}}} }$$ {N_{CMP}} $MAAME/pixelTime/s
      LoFTR117531.71%9.980.42
      222041.82%10.060.42
      312065.00%17.100.42
      COTR110033.00%9.7345.77
      2581118.97%22.1345.05
      3693347.83%17.6845.04
      SuperGlue114814295.95%2.863.14
      213212896.97%2.483.10
      3595389.83%1.143.12
      LightGlue1783747.44%12.692.24
      2442659.09%4.292.21
      3372567.57%10.262.17
      This paper146244997.19%2.812.29
      228027698.57%2.422.25
      316816598.21%1.072.22
    • Table 4. Performance comparison of aircraft positioning performance

      View table
      View in Article

      Table 4. Performance comparison of aircraft positioning performance

      GroupTrue valueLoFTRCOTRSuperGlueLightGlueThis paper
      1364, 182354, 243424, 206285, 104 363, 182362, 185
      2247, 292258, 314248, 307242, 288242, 285 243, 287
      3235, 127265, 100273, 129203, 88249, 207234, 129
      Average errors/pixel42.2639.2355.9630.274.08
    Tools

    Get Citation

    Copy Citation Text

    Qingge Li, Xiaogang Yang, Ruitao Lu, Jiwei Fan, Bin Tang, Zhenyu Zhang, Siyu Wang, Shuang Su. Aircraft localization method based on hierarchical rotation matching of infrared images[J]. Infrared and Laser Engineering, 2024, 53(5): 20240086

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 29, 2024

    Accepted: --

    Published Online: Jun. 21, 2024

    The Author Email:

    DOI:10.3788/IRLA20240086

    Topics