Journal of Synthetic Crystals, Volume. 49, Issue 10, 1841(2020)
Preparation and Photocatalytic Antibacterial Property under Visible Light of Ag/g-C3N4 Nanosheets
[6] [6] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. Fems Microbiology Letters, 1985, 29(1-2): 211-214.
[7] [7] Zhang C, Li Y, Shuai D, et al. Progress and challenges in photocatalytic disinfection of waterborne viruses: a review to fill current knowledge gaps[J]. Chemical Engineering Journal, 2019, 355: 399-415.
[8] [8] Liu Y, Zeng X, Hu X, et al. Two-dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(1): 22-37.
[9] [9] Ateia M, Alalm M, Awfa D, et al. Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review[J]. Science of the Total Environment, 2019: 134197.
[10] [10] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
[12] [12] Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. The Journal of Physical Chemistry C, 2009, 113(12): 4940-4947.
[13] [13] Wang Y, Hong J, Zhang W, et al. Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization[J]. Catalysis Science & Technology, 2013, 3(7): 1703-1711.
[14] [14] Zhang H, Yu A. Photophysics and photocatalysis of carbon nitride synthesized at different temperatures[J]. The Journal of Physical Chemistry C, 2014, 118(22): 11628-11635.
[15] [15] Ma Y, Liu E, Hu X, et al. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities[J]. Applied Surface Science, 2015, 358: 246-251.
[19] [19] Liu Q, Shen J, Yu X, et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C3N4 nanosheets[J]. Applied Catalysis B: Environmental, 2019, 248: 84-94.
[20] [20] Wang J, Yang Z, Yao W, et al. Defects modified in the exfoliation of g-C3N4 nanosheets via a self-assembly process for improved hydrogen evolution performance[J]. Applied Catalysis B: Environmental, 2018, 238: 629-637.
[21] [21] Yang L, Liu X, Liu Z, et al. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor[J]. Ceramics International, 2018, 44(17): 20613-20619.
[22] [22] Chen M, Guo C, Hou S, et al. In-situ fabrication of Ag/Pg-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation[J]. Journal of hazardous materials, 2019, 366: 219-228.
[23] [23] Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565.
[24] [24] Tang Q, Sun Z, Deng S, et al. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance[J]. Journal of Colloid and Interface Science, 2020, 564: 406-417.
[25] [25] Qiu P, Yao J, Chen H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4photocatalyst[J]. Journal of Hazardous Materials, 2016, 317: 158-168.
[26] [26] Marugán J, Grieken R, Sordo C, et al. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions[J]. Appl Catal B: Environ, 2008(82): 27-36.
[27] [27] Baram N, Starosvetsky D, Starosvetsky J, et al. Enhanced inactivation of E.coli bacteria using immobilized porous TiO2 photoelectrocatalysis[J]. Electrochim Acta, 2009(54): 3381-3386.
Get Citation
Copy Citation Text
LI Juan, ZHAO Dan, GUAN Shoujiang, LIU Xiangrong, XU Qiuyue, MA Zhanqiang. Preparation and Photocatalytic Antibacterial Property under Visible Light of Ag/g-C3N4 Nanosheets[J]. Journal of Synthetic Crystals, 2020, 49(10): 1841