Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2502(2024)
Terbium Ion Doped Silicate Glass-Ceramics for X-ray Imaging
[1] [1] JANA A, CHO S, PATIL S A, et al. Perovskite: Scintillators, direct detectors, and X-ray imagers[J]. Mater Today, 2022, 55: 110–136.
[2] [2] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Lett, 2021, 6(2): 739–768.
[3] [3] ZHOU C, HAN M Y, XIAO Y R, et al. Lead-free perovskites and derivatives enable direct and scintillation-type X-ray detection[J]. Mater Sci Eng R Rep, 2023, 156: 100756.
[4] [4] CHEN W Q, WANG T, WANG T C, et al. Customizable scintillator of Cs3Cu2I5: 2%In+@Paper for large-area X-ray imaging[J]. Adv Sci, 2023, 10(34): 2304957.
[5] [5] WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144–163.
[6] [6] LU L, SUN M Z, LU Q Y, et al. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy[J]. Nano Energy, 2021, 79: 105437.
[7] [7] YANAGIDA T. Inorganic scintillating materials and scintillation detectors[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2018, 94(2): 75–97.
[8] [8] VANě?EK V, DěCKá K, MIHóKOVá E, et al. Advanced halide scintillators: From the bulk to nano[J]. Adv Photon Res, 2022, 3(8): 2200011.
[9] [9] KIM C, LEE W, MELIS A, et al. A review of inorganic scintillation crystals for extreme environments[J]. Crystals, 2021, 11(6): 669.
[10] [10] HE P, WEI B, ZHOU M, et al. Photonic material selection of scintillation crystals using Monte Carlo method for X-ray detection in industrial computed tomography[J]. J Sens, 2014, 2014: 984716.
[11] [11] OUYANG X, LIN R C, DING Y, et al. Efficient sky-blue radioluminescence of microcrystalline Cs3Cu2I5 based large-scale eco-friendly composite scintillators for high-sensitive ionizing radiation detection[J]. Mater Chem Front, 2021, 5(12): 4739–4745.
[12] [12] ZHENG Q Y, LI Y, WU W J, et al. Effect of sintering temperature on luminescence properties of borosilicate matrix blue–green emitting color conversion glass ceramics[J]. Chin Phys B, 2019, 28(10): 108102.
[13] [13] LEE H, CHUNG W J, BIN IM W. Pr3+-doped oxyfluoride glass ceramic as a white LED color converter wide color gamut[J]. J Lumin, 2021, 236: 118064.
[14] [14] MIAO X W, BAI Z T, HUO X T, et al. Controllable preparation of CaF2 transparent glass ceramics: Dependence of the light transmittance mechanism on the glass crystallization behaviour[J]. Ceram Int, 2019, 45(7): 8510–8517.
[15] [15] JIANG Y G, FAN J T, JIANG B X, et al. Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions[J]. Sci Rep, 2016, 6: 29873.
[16] [16] MIAO X W, HUO X T, LIU L, et al. Crystallisation kinetics and structural stability of transparent CaF2 glass ceramics: Dependence of light transmittance on the amount of CaF2 added[J]. Ceram Int, 2020, 46(10): 15314–15324.
[17] [17] LI K, ZHANG W C, NIU L Y, et al. Lead-free cesium manganese halide nanocrystals embedded glasses for X-ray imaging[J]. Adv Sci, 2023, 10(4): e2204843.
[19] [19] FANG Z H, TANG H T, YANG Z, et al. Transparent medium embedded with CdS quantum dots for X-ray imaging[J]. Adv Opt Mater, 2021, 9(24): 2101607.
[20] [20] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): 2102529.
[21] [21] LIU Q H, RAN P, CHEN W L, et al. Bright transparent scintillators with high fraction BaCl2: Eu2+ nanocrystals precipitation: An ionic-covalent hybrid network strategy toward superior X-ray imaging glass-ceramics[J]. Adv Sci, 2023, 10(34): e2304889.
[22] [22] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): 2003728.
[23] [23] TANG H T, LIU S B, FANG Z H, et al. High-resolution X-ray time-lapse imaging from fluoride nanocrystals embedded in glass matrix[J]. Adv Opt Mater, 2022, 10(12): 2102836.
[24] [24] GUPTA I, SINGH S, BHAGWAN S, et al. Rare earth (RE) doped phosphors and their emerging applications: A review[J]. Ceram Int, 2021, 47(14): 19282–19303.
[25] [25] GUPTA S K, SUDARSHAN K, KADAM R M. Optical nanomaterials with focus on rare earth doped oxide: A Review[J]. Mater Today Commun, 2021, 27: 102277.
[26] [26] MA J J, ZHU W J, LEI L, et al. Highly efficient NaGdF4: Ce/Tb nanoscintillator with reduced afterglow and light scattering for high-resolution X-ray imaging[J]. ACS Appl Mater Interfaces, 2021, 13(37): 44596–44603.
[27] [27] YANG Z T, HU J Q, VAN DER HEGGEN D, et al. Realizing simultaneous X-ray imaging and dosimetry using phosphor-based detectors with high memory stability and convenient readout process[J]. Adv Funct Mater, 2022, 32(31): 2201684.
[28] [28] HUANG X, HE J, JIANG Y G, et al. Ultrafast GGAG: Ce X-ray scintillation ceramics with Ca2+ and Mg2+ co-dopants[J]. Ceram Int, 2022, 48(16): 23571–23577.
Get Citation
Copy Citation Text
LI Xin, ZHANG Jian, LUO Siyuan, XIAO Jianqiang, ZHANG Sheng, WU Junxiao, LIU Zhichao, LI Baozhu, XU Xuhui. Terbium Ion Doped Silicate Glass-Ceramics for X-ray Imaging[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2502
Category:
Received: Nov. 17, 2023
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Baozhu LI (libaozhu916@tom.com)