Laser & Optoelectronics Progress, Volume. 60, Issue 8, 0811001(2023)

High-Speed 3D Topography Measurement Based on Fringe Projection: A Review

Zhoujie Wu and Qican Zhang*
Author Affiliations
  • College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • show less
    References(198)

    [1] Zhong R Y, Xu X, Klotz E et al. Intelligent manufacturing in the context of industry 4.0: a review[J]. Engineering, 3, 616-630(2017).

    [2] Jin G P, Li J Z[M]. Laser metrology(1999).

    [3] Zhang G J[M]. Vision measurement(2008).

    [4] Su X Y, Li J T, Cao Y P et al[M]. Information optics(2011).

    [5] Harding K G[M]. Handbook of optical dimensional metrology(2013).

    [6] Chen F, Brown G M, Song M M. Overview of 3-D shape measurement using optical methods[J]. Optical Engineering, 39, 10-22(2000).

    [7] Malamas E N, Petrakis E G M, Zervakis M et al. A survey on industrial vision systems, applications and tools[J]. Image and Vision Computing, 21, 171-188(2003).

    [8] Ford K R, Myer G D, Hewett T E. Reliability of landing 3D motion analysis: implications for longitudinal analyses[J]. Medicine and Science in Sports and Exercise, 39, 2021-2028(2007).

    [9] Lambers K, Remondino F. Optical 3D measurement techniques in archaeology: recent developments and applications[C](2007).

    [10] Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 37, 827-849(2004).

    [11] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in Engineering, 48, 133-140(2010).

    [12] Geng J. Structured-light 3D surface imaging: atutorial[J]. Advances in Optics and Photonics, 3, 128-160(2011).

    [13] Xu J, Zhang S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering, 135, 106193(2020).

    [14] Marrugo A G, Gao F, Zhang S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 37, B60-B77(2020).

    [17] Wu Z J, Chang M, Shi B W et al. 3D shape measurement system developed on mobile platform[J]. Proceedings of SPIE, 10250, 1025015(2017).

    [20] Guo W B, Zhang Q C, Wu Z J. Real-time three-dimensional imaging technique based on phase-shift fringe analysis: a review[J]. Laser & Optoelectronics Progress, 58, 0800001(2021).

    [21] Baqersad J, Poozesh P, Niezrecki C et al. Photogrammetry and optical methods in structural dynamics: a review[J]. Mechanical Systems and Signal Processing, 86, 17-34(2017).

    [22] Everton S K, Hirsch M, Stravroulakis P et al. Review of in situ process monitoring and in situ metrology for metal additive manufacturing[J]. Materials & Design, 95, 431-445(2016).

    [23] Zhou J, Li P G, Zhou Y H et al. Toward new-generation intelligent manufacturing[J]. Engineering, 4, 11-20(2018).

    [24] Leach R K, Bourell D, Carmignato S et al. Geometrical metrology for metal additive manufacturing[J]. CIRP Annals, 68, 677-700(2019).

    [25] Kelkar P U, Kim H S, Cho K H et al. Cellular auxetic structures for mechanical metamaterials: a review[J]. Sensors, 20, 3132(2020).

    [26] Zhang Z K, Wen Q G, Li P J et al. Application of double arrowhead auxetic honeycomb structure in displacement measurement[J]. Sensors and Actuators A: Physical, 333, 113218(2022).

    [27] Carr J, Baqersad J, Niezrecki C et al. Full-field dynamic strain on wind turbine blade using digital image correlation techniques and limited sets of measured data from photogrammetric targets[J]. Experimental Techniques, 40, 819-831(2016).

    [28] Young J, Walker S M, Bomphrey R J et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency[J]. Science, 325, 1549-1552(2009).

    [29] Fabian J, Siwanowicz I, Uhrhan M et al. Systematic characterization of wing mechanosensors that monitor airflow and wing deformations[J]. iScience, 25, 104150(2022).

    [30] Li Q Q, Wu L J, Hu L et al. Axial compression performance of a bamboo-inspired porous lattice structure[J]. Thin-Walled Structures, 180, 109803(2022).

    [31] Heim F M, Daspit J T, Holzmond O B et al. Analysis of tow architecture variability in biaxially braided composite tubes[J]. Composites Part B: Engineering, 190, 107938(2020).

    [32] Neri P, Paoli A, Razionale A V et al. Low-speed cameras system for 3D-DIC vibration measurements in the kHz range[J]. Mechanical Systems and Signal Processing, 162, 108040(2022).

    [33] Steel W H, Knight P[M]. Interferometry(1983).

    [34] Creath K. V phase-measurement interferometry techniques[M]. Progress in optics, 349-393(1988).

    [35] Heist S, Mann A, Kühmstedt P et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement[J]. Optical Engineering, 53, 112208(2014).

    [36] Wissmann P, Schmitt R. Hand guided 3-D scanning[R](2014).

    [37] Zhang Q C, Huang L, Chin Y W et al. 4D metrology of flapping-wing micro air vehicle based on fringe projection[J]. Proceedings of SPIE, 8769, 87692Y(2013).

    [38] Zhang Q C, Su X Y. High-speed optical measurement for the drumhead vibration[J]. Optics Express, 13, 3110-3116(2005).

    [39] Zuo C, Tao T Y, Feng S J et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second[J]. Optics and Lasers in Engineering, 102, 70-91(2018).

    [40] Wang Y J, Laughner J I, Efimov I R et al. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique[J]. Optics Express, 21, 5822-5832(2013).

    [41] Heist S, Lutzke P, Schmidt I et al. High-speed three-dimensional shape measurement using GOBO projection[J]. Optics and Lasers in Engineering, 87, 90-96(2016).

    [42] Wu Z J, Guo W B, Zhang Q C. High-speed three-dimensional shape measurement based on shifting Gray-code light[J]. Optics Express, 27, 22631-22644(2019).

    [43] Feng S J, Zuo C, Yin W et al. Micro deep learning profilometry for high-speed 3D surface imaging[J]. Optics and Lasers in Engineering, 121, 416-427(2019).

    [44] Nguyen H, Dunne N, Li H et al. Real-time 3D shape measurement using 3LCD projection and deep machine learning[J]. Applied Optics, 58, 7100-7109(2019).

    [45] Qian J M, Feng S J, Li Y X et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry[J]. Optics Letters, 45, 1842-1845(2020).

    [46] Zuo C, Feng S J, Huang L et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 109, 23-59(2018).

    [47] Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review[J]. Optics and Lasers in Engineering, 48, 191-204(2010).

    [48] Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [49] Kondo Y, Takubo K, Tominaga H et al. Development of “hypervision HPV-X” high-speed video camera[J]. Shimadzu Review, 69, 285-91(2012).

    [50] Liang J Y, Wang L V. Single-shot ultrafast optical imaging[J]. Optica, 5, 1113-1127(2018).

    [51] Qi D L, Zhang S A, Yang C S et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2, 014003(2020).

    [52] Kakue T, Yonesaka R, Tahara T et al. High-speed phase imaging by parallel phase-shifting digital holography[J]. Optics Letters, 36, 4131-4133(2011).

    [53] Matlis N H, Axley A, Leemans W P. Single-shot ultrafast tomographic imaging by spectral multiplexing[J]. Nature Communications, 3, 1-8(2012).

    [54] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [55] Mochizuki F, Kagawa K, Okihara S I et al. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor[J]. Optics Express, 24, 4155-4176(2016).

    [56] Muybridge J. The horse in motion[J]. Nature, 25, 605(1882).

    [57] Wang X F, Yan L H, Si J H et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique[J]. Applied Optics, 53, 8395-8399(2014).

    [58] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 1-12(2014).

    [59] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).

    [60] Ehn A, Bood J, Li Z M et al. FRAME: femtosecond videography for atomic and molecular dynamics[J]. Light: Science & Applications, 6, e17045(2017).

    [61] Fujimoto Y, Sawabe T, Kanbara M et al. Structured light of flickering patterns having different frequencies for a projector-event-camera system[C], 582-588(2022).

    [62] Sundar V, Ma S Z, Sankaranarayanan A C et al. Single-photon structured light[C], 17844-17854(2022).

    [63] Jiang W J, Yin Y K, Jiao J P et al. 2, 000, 000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors[J]. Photonics Research, 10, 2157-2164(2022).

    [64] Gallego G, Delbrück T, Orchard G et al. Event-based vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 154-180(2020).

    [65] Mangalore A R, Seelamantula C S, Thakur C S. Neuromorphic fringe projection profilometry[J]. IEEE Signal Processing Letters, 27, 1510-1514(2020).

    [66] Huang X Y, Zhang Y Y, Xiong Z W. High-speed structured light based 3D scanning using an event camera[J]. Optics Express, 29, 35864-35876(2021).

    [67] Muglikar M, Gallego G, Scaramuzza D. ESL: event-based structured light[C], 1165-1174(2022).

    [68] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of SPIE, 6065, 606509(2006).

    [69] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [70] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [71] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).

    [72] Hahamovich E, Monin S, Hazan Y et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks[J]. Nature Communications, 12, 1-6(2021).

    [73] Kilcullen P, Ozaki T, Liang J Y. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns[J]. Nature Communications, 13, 1-10(2022).

    [74] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [75] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [76] Zhang Z B, Zhong J G. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 41, 2497-2500(2016).

    [77] Kilcullen P, Jiang C, Ozaki T et al. Camera-free three-dimensional dual photography[J]. Optics Express, 28, 29377-29389(2020).

    [78] Ma Y Y, Yin Y K, Jiang S et al. Single pixel 3D imaging with phase-shifting fringe projection[J]. Optics and Lasers in Engineering, 140, 106532(2021).

    [79] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 19, 732(2019).

    [80] Gibson G M, Sun B Q, Edgar M P et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017).

    [81] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [82] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [83] She R B, Liu W Q, Lu Y F et al. Fourier single-pixel imaging in the terahertz regime[J]. Applied Physics Letters, 115, 021101(2019).

    [84] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).

    [85] Smith T A, Shih Y, Wang Z H et al. From optical to X-ray ghost imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 935, 173-177(2019).

    [87] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [88] Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 34, 3080-3082(2009).

    [89] Liu Y H, Zhang Q C, Zhang H H et al. Improve temporal Fourier transform profilometry for complex dynamic three-dimensional shape measurement[J]. Sensors, 20, 1808(2020).

    [90] Teng J J, Guo Q, Chen M H et al. Time-encoded single-pixel 3D imaging[J]. APL Photonics, 5, 020801(2020).

    [91] Wissmann P, Forster F, Schmitt R. Fast and low-cost structured light pattern sequence projection[J]. Optics Express, 19, 24657-24671(2011).

    [92] Wissmann P, Schmitt R. Hand guided 3-D scanning[D](2014).

    [93] Hyun J S, Chiu G T C, Zhang S. High-speed and high-accuracy 3D surface measurement using a mechanical projector[J]. Optics Express, 26, 1474-1487(2018).

    [94] Zhang H H, Zhang Q C, Li Y et al. High speed 3D shape measurement with temporal Fourier transform profilometry[J]. Applied Sciences, 9, 4123(2019).

    [95] Heist S, Dietrich P, Landmann M et al. GOBO projection for 3D measurements at highest frame rates: a performance analysis[J]. Light: Science & Applications, 7, 1-13(2018).

    [96] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009).

    [97] Chan A C S, Lau A K S, Wong K K Y et al. Arbitrary two-dimensional spectrally encoded pattern generation: a new strategy for high-speed patterned illumination imaging[J]. Optica, 2, 1037-1044(2015).

    [98] Lei C, Guo B S, Cheng Z Z et al. Optical time-stretch imaging: principles and applications[J]. Applied Physics Reviews, 3, 011102(2016).

    [99] Pagès J, Salvi J, Collewet C et al. Optimized De Bruijn patterns for one-shot shape acquisition[J]. Image and Vision Computing, 23, 707-720(2005).

    [100] Morita H, Yajima K, Sakata S. Reconstruction of surfaces of 3-D objects by M-array pattern projection method[C], 468-473(2002).

    [101] Zhou P, Zhu J P, Jing H L. Optical 3-D surface reconstruction with color binary speckle pattern encoding[J]. Optics Express, 26, 3452-3465(2018).

    [102] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).

    [103] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 22, 3977(1983).

    [104] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 35, 263-284(2001).

    [105] Qian K M. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics, 43, 2695-2702(2004).

    [106] Qian K M. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[J]. Optics and Lasers in Engineering, 45, 304-317(2007).

    [107] Sandoz P. Wavelet transform as a processing tool in white-light interferometry[J]. Optics Letters, 22, 1065-1067(1997).

    [108] Zhong J G, Weng J W. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics, 43, 4993-4998(2004).

    [109] Lei H, Qian K M, Bing P et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering, 48, 141-148(2010).

    [110] Hong N, Tang C, Xu M et al. Phase retrieval for objects in rain based on a combination of variational image decomposition and variational mode decomposition in FPP[J]. Applied Optics, 61, 6704-6713(2022).

    [111] Zhou X, Podoleanu A G, Yang Z Q et al. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns[J]. Optics Express, 20, 24247-24262(2012).

    [112] Gocłowski P, Cywińska M, Ahmad A et al. Single-shot fringe pattern phase retrieval using improved period-guided bidimensional empirical mode decomposition and Hilbert transform[J]. Optics Express, 29, 31632-31649(2021).

    [113] Zhao Q, Tang C, Min X et al. Dynamic shape measurement for objects with patterns by Fourier fringe projection profilometry based on variational decomposition and multi-scale Retinex[J]. Applied Optics, 60, 10322-10331(2021).

    [114] Zhu X J, Deng Y H, Tang C et al. Variational mode decomposition for phase retrieval in fringe projection 3D shape measurement[J]. Optics and Precision Engineering, 24, 2318-2324(2016).

    [115] Feng Y F, Han Y, Zhang Q C. Two 3D spatial phase unwrapping algorithms for dynamic 3D shape measurement[J]. Journal of Modern Optics, 67, 1479-1491(2020).

    [116] Zhang Q C, Su X Y. An optical measurement of vortex shape at a free surface[J]. Optics & Laser Technology, 34, 107-113(2002).

    [117] Zhang Q C, Liu Y K, Lehtonen P. Shape measurement and vibration analysis of moving speaker cone[J]. Proceedings of SPIE, 9234, 92340T(2014).

    [118] Zhang Q C. Technical study of three-dimensional shape measurement for dynamic process[D](2005).

    [119] Zhang Q C, Su X Y, Cao Y P et al. Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination[J]. Optical Engineering, 44, 113601(2005).

    [120] Su X Y, Li J, Guo L R et al. An improved Fourier transform profilometry[J]. Proceedings of SPIE, 0954, 241-245(1989).

    [121] Guo H, Huang P S. 3-D shape measurement by use of a modified Fourier transform method[J]. Proceedings of SPIE, 7066, 70660E(2008).

    [122] Li J L, Gao X R, Wang Z Y et al. Three dimensional detection of rail shape based on self-adaptive filtering[J]. Proceedings of SPIE, 9282, 928211(2014).

    [123] Li C M, Cao Y P, Wang L et al. Real-time computer-generated moiré profilometry with adaptive filtering algorithm[J]. Optical Engineering, 59, 034102(2020).

    [124] Zhang H H, Li Y, Zhang Q C. Dynamic 3D shape measurement based on rotating grating projection[J]. Acta Optica Sinica, 41, 2312005(2021).

    [125] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 23, 3105(1984).

    [126] Halioua M, Liu H C. Optical three-dimensional sensing by phase measuring profilometry[J]. Optics and Lasers in Engineering, 11, 185-215(1989).

    [127] Zhang S, Huang P S. High-resolution, real-time three-dimensional shape measurement[J]. Optical Engineering, 45, 123601(2006).

    [128] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 48, 149-158(2010).

    [129] van der Jeught S, Dirckx J J J. Real-time structured light profilometry: a review[J]. Optics and Lasers in Engineering, 87, 18-31(2016).

    [130] Liu K, Wang Y C, Lau D L et al. Dual-frequency pattern scheme for high-speed 3-D shape measurement[J]. Optics Express, 18, 5229-5244(2010).

    [131] Zuo C, Chen Q, Gu G H et al. High-speed three-dimensional profilometry for multiple objects with complex shapes[J]. Optics Express, 20, 19493-19510(2012).

    [132] Nguyen H, Nguyen D, Wang Z Y et al. Real-time, high-accuracy 3D imaging and shape measurement[J]. Applied Optics, 54, A9-A17(2015).

    [133] Qian J M, Feng S J, Tao T Y et al. High-resolution real-time 360° 3D model reconstruction of a handheld object with fringe projection profilometry[J]. Optics Letters, 44, 5751-5754(2019).

    [134] Liu K, Hua W Q, Wei J H et al. Divide and conquer: high-accuracy and real-time 3D reconstruction of static objects using multiple-phase-shifted structured light illumination[J]. Optics Express, 28, 6995-7007(2020).

    [135] Guo W B, Wu Z J, Li Y Y et al. Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction[J]. Optics Express, 28, 26882-26897(2020).

    [137] Jiang C, Kilcullen P, Lai Y et al. High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition[J]. Photonics Research, 8, 1808-1817(2020).

    [138] Yin W, Feng S J, Tao T Y et al. High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system[J]. Optics Express, 27, 2411-2431(2019).

    [139] Young M, Beeson E, Davis J et al. Viewpoint-coded structured light[C](2007).

    [140] Ishiyama R, Sakamoto S, Tajima J et al. Absolute phase measurements using geometric constraints between multiple cameras and projectors[J]. Applied Optics, 46, 3528-3538(2007).

    [141] Bräuer-Burchardt C, Munkelt C, Heinze M et al. Phase unwrapping in fringe projection systems using epipolar geometry[M]. Blanc-Talon J, Bourennane S, Philips W, et al. International conference on advanced concepts for intelligent vision systems. Lecture notes in computer science, 5259, 422-432(2008).

    [142] Heist S, Zhang C, Reichwald K et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light[J]. Optics Express, 26, 23366-23379(2018).

    [143] Landmann M, Heist S, Dietrich P et al. High-speed 3D thermography[J]. Optics and Lasers in Engineering, 121, 448-455(2019).

    [144] Zuo C, Huang L, Zhang M L et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 85, 84-103(2016).

    [145] Zhang Q C, Wu Z J. Three-dimensional imaging technique based on Gray-coded structured illumination[J]. Infrared and Laser Engineering, 49, 0303004(2020).

    [146] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 32, 3047-3052(1993).

    [147] Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous objects[J]. Applied Optics, 36, 2770-2775(1997).

    [148] Cheng Y Y, Wyant J C. Two-wavelength phase shifting interferometry[J]. Applied Optics, 23, 4539-4543(1984).

    [149] Cheng Y Y, Wyant J C. Multiple-wavelength phase-shifting interferometry[J]. Applied Optics, 24, 804(1985).

    [150] Gushov V I, Solodkin Y N. Automatic processing of fringe patterns in integer interferometers[J]. Optics and Lasers in Engineering, 14, 311-324(1991).

    [151] Zhong J G, Wang M. Phase unwrapping by lookup table method: application to phase map with singular points[J]. Optical Engineering, 38, 2075-2080(1999).

    [152] Wang Y J, Zhang S. Superfast multifrequency phase-shifting technique with optimal pulse width modulation[J]. Optics Express, 19, 5149-5155(2011).

    [153] Zuo C, Chen Q, Gu G H et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection[J]. Optics and Lasers in Engineering, 51, 953-960(2013).

    [154] Jiang C, Kilcullen P, Lai Y M et al. Multi-scale band-limited illumination profilometry for robust three-dimensional surface imaging at video rate[J]. Optics Express, 30, 19824-19838(2022).

    [155] Gray F. Pulse code communication[P].

    [156] Zhang Q C, Su X Y, Xiang L Q et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 50, 574-579(2012).

    [157] Wu Z J, Guo W B, Li Y Y et al. High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light[J]. Photonics Research, 8, 819-829(2020).

    [158] Zheng D L, Da F P, Qian K M et al. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter[J]. Optics Express, 25, 4700-4713(2017).

    [159] Zhang S. Flexible 3D shape measurement using projector defocusing: extended measurement range[J]. Optics Letters, 35, 934-936(2010).

    [160] Huang L, Asundi A K. Phase invalidity identification framework with the temporal phase unwrapping method[J]. Measurement Science and Technology, 22, 035304(2011).

    [161] Feng S J, Chen Q, Zuo C et al. Automatic identification and removal of outliers for high-speed fringe projection profilometry[J]. Optical Engineering, 52, 013605(2013).

    [162] Zhang Y W, Tong J, Lu L et al. Fringe order correction for fringe projection profilometry based on robust principal component analysis[J]. IEEE Access, 9, 23110-23119(2021).

    [163] Wu Z J, Guo W B, Lu L L et al. Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry[J]. Optics Express, 29, 27181-27192(2021).

    [164] Zheng D L, Qian K M, Da F P et al. Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing[J]. Applied Optics, 56, 3660-3665(2017).

    [165] He X, Zheng D, Kemao Q et al. Quaternary Gray-code phase unwrapping for binary fringe projection profilometry[J]. Optics and Lasers in Engineering, 121, 358-368(2019).

    [166] Wu Z J, Zuo C, Guo W B et al. High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light[J]. Optics Express, 27, 1283-1297(2019).

    [167] Wu Z J, Guo W B, Zhang Q C et al. Time-overlapping structured-light projection: high performance on 3D shape measurement for complex dynamic scenes[J]. Optics Express, 30, 22467-22486(2022).

    [168] Wu Z J, Guo W B, Zhang Q C. Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 153, 106995(2022).

    [169] Zuo C, Qian J M, Feng S J et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 11, 1-54(2022).

    [170] Feng S J, Chen Q, Gu G H et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics, 1, 025001(2019).

    [171] Song J W, Liu K, Sowmya A et al. Super-resolution phase retrieval network for single-pattern structured light 3D imaging[J]. IEEE Transactions on Image Processing, 32, 537-549(2022).

    [172] Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 29, 4862-4872(2020).

    [173] Yin W, Chen Q, Feng S J et al. Temporal phase unwrapping using deep learning[J]. Scientific Reports, 9, 1-12(2019).

    [174] Wang K Q, Qian K M, Di J L et al. Deep learning spatial phase unwrapping: a comparative review[J]. Advanced Photonics Nexus, 1, 014001(2022).

    [175] Nguyen H, Wang Y Z, Wang Z Y. Single-shot 3D shape reconstruction using structured light and deep convolutional neural networks[J]. Sensors, 20, 3718(2020).

    [176] Li Y X, Qian J M, Feng S J et al. Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement[J]. Optics Express, 30, 3424-3442(2022).

    [177] Yu H T, Chen X Y, Zhang Z et al. Dynamic 3-D measurement based on fringe-to-fringe transformation using deep learning[J]. Optics Express, 28, 9405-9418(2020).

    [178] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    [179] Feng S J, Zuo C, Hu Y et al. Deep-learning-based fringe-pattern analysis with uncertainty estimation[J]. Optica, 8, 1507-1510(2021).

    [180] Zhang J, Luo B, Su X et al. Depth range enhancement of binary defocusing technique based on multi-frequency phase merging[J]. Optics Express, 27, 36717-36730(2019).

    [181] Hu Y, Liu Z, Yang D Z et al. Online fringe pitch selection for defocusing a binary square pattern projection phase-shifting method[J]. Optics Express, 28, 30710-30725(2020).

    [182] Han B B, Yang S R, Chen S Y. Determination and adjustment of optimal defocus level for fringe projection systems[J]. Applied Optics, 58, 6300-6307(2019).

    [183] Wang Y F, Zhao H J, Jiang H Z et al. Defocusing parameter selection strategies based on PSF measurement for square-binary defocusing fringe projection profilometry[J]. Optics Express, 26, 20351-20367(2018).

    [184] Sun J S, Zuo C, Feng S J et al. Improved intensity-optimized dithering technique for 3D shape measurement[J]. Optics and Lasers in Engineering, 66, 158-164(2015).

    [185] Lu F, Wu C D, Yang J K. Optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics Communications, 430, 246-255(2019).

    [186] Zhu S J, Cao Y P, Zhang Q C et al. High-efficiency and robust binary fringe optimization for superfast 3D shape measurement[J]. Optics Express, 30, 35539-35553(2022).

    [187] Xu Y, Ekstrand L, Dai J F et al. Phase error compensation for three-dimensional shape measurement with projector defocusing[J]. Applied Optics, 50, 2572-2581(2011).

    [188] Zheng D L, Da F P, Qian K M et al. Phase error analysis and compensation for phase shifting profilometry with projector defocusing[J]. Applied Optics, 55, 5721-5728(2016).

    [189] Zhang J R, Zhang Y J, Chen B et al. Full-field phase error analysis and compensation for nonsinusoidal waveforms in phase shifting profilometry with projector defocusing[J]. Optics Communications, 430, 467-478(2019).

    [190] Zhu J P, Zhou P, Su X Y et al. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination[J]. Optics Express, 24, 28549-28560(2016).

    [191] Li X R, Guo W B, Zhang Q C et al. Three-dimensional shape measurement by projecting arbitrary-bit fringe using DLP projector[J]. Acta Optica Sinica, 43, 0712003(2023).

    [192] Jiang C, Kilcullen P, Liu X L et al. Real-time high-speed three-dimensional surface imaging using band-limited illumination profilometry with a CoaXPress interface[J]. Optics Letters, 45, 964-967(2020).

    [193] Zhu S J, Wu Z J, Zhang J et al. Superfast and large-depth-range sinusoidal fringe generation for multi-dimensional information sensing[J]. Photonics Research, 10, 2590-2598(2022).

    [194] Salahieh B, Chen Z Y, Rodriguez J J et al. Multi-polarization fringe projection imaging for high dynamic range objects[J]. Optics Express, 22, 10064-10071(2014).

    [195] Zhang S, Yau S T. High dynamic range scanning technique[J]. Optical Engineering, 48, 033604(2009).

    [196] Ekstrand L, Zhang S. Autoexposure for three-dimensional shape measurement using a digital-light-processing projector[J]. Optical Engineering, 50, 123603(2011).

    [197] Liu X J, Chen W Y, Madhusudanan H et al. Optical measurement of highly reflective surfaces from a single exposure[J]. IEEE Transactions on Industrial Informatics, 17, 1882-1891(2021).

    [198] Zhang J, Luo B, Li F Q et al. Single-exposure optical measurement of highly reflective surfaces via deep sinusoidal prior for complex equipment production[J]. IEEE Transactions on Industrial Informatics, 19, 2039-2048(2023).

    [199] Gupta M, Nayar S K. Micro phase shifting[C], 813-820(2012).

    [200] Jiang H Z, Li Y X, Zhao H J et al. Parallel single-pixel imaging: a general method for direct–global separation and 3D shape reconstruction under strong global illumination[J]. International Journal of Computer Vision, 129, 1060-1086(2021).

    [201] Wu Z J, Guo W B, Pan B et al. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces[J]. Optics and Lasers in Engineering, 142, 106614(2021).

    [202] Wu Z J, Guo W B, Chen Z D et al. Three-dimensional shape and deformation measurement on complex structure parts[J]. Scientific Reports, 12, 1-14(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhoujie Wu, Qican Zhang. High-Speed 3D Topography Measurement Based on Fringe Projection: A Review[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 31, 2022

    Accepted: Mar. 1, 2023

    Published Online: Apr. 24, 2023

    The Author Email: Zhang Qican (zqc@scu.edu.cn)

    DOI:10.3788/LOP223457

    Topics