Journal of the Chinese Ceramic Society, Volume. 51, Issue 7, 1835(2023)
Electrochemical Performance of Oxygen Vacancies Enhanced Transition Metal Oxides in Supercapacitor
[1] [1] ZHANG X, LIU X, ZENG Y, et al. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges[J]. Small Methods, 2020, 4(6): 1900823.
[2] [2] AN C, ZHANG Y, GUO H, et al. Metal oxide-based supercapacitors: Progress and prospectives[J]. Nanoscale Adv, 2019, 1(12): 4644.
[3] [3] MA Y, XIE X, YANG W, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Adv Compos Hybrid Mater, 2021, 4(4): 906.
[4] [4] LU I T, BERNARDI M. Using defects to store energy in materials-a computational study[J]. Sci Rep, 2017, 7(1): 1-8.
[5] [5] LIU H, FU H, LIU Y, et al. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis[J]. Chemosphere, 2021, 272: 129534.
[6] [6] WANG L, XIE X, DINH K N, et al. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors[J]. Coord Chem Rev, 2019, 397: 138-167.
[7] [7] LEI F, SUN Y, LIU K, et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting[J]. J Am Chem Soc, 2014, 136(19): 6826-6829.
[8] [8] FENG H, XU Z, REN L, et al. Activating titania for efficient electrocatalysis by vacancy engineering[J]. ACS Catal, 2018, 8(5): 4288-4293.
[9] [9] SUSANTI D, TSAI D S, HUANG Y S, et al. Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2[J]. J Phys Chem C, 2007, 111(26): 9530.
[10] [10] LU X, WANG G, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors[J]. Nano Lett, 2012, 12(3): 1690.
[11] [11] WANG G, SHEN P, LUO Y, et al. A vacancy engineered MnO2-x electrocatalyst promotes electroreduction of nitrate to ammonia[J]. Dalton Trans, 2022, 51(24): 9206.
[12] [12] ZHENG M, XING C, ZHANG W, et al. Hydrogenated hematite nanoplates for enhanced photocatalytic and photo-fenton oxidation of organic compounds[J]. Inorg Chem Commun, 2020, 119: 108040.
[13] [13] CHENG S, ZHANG C, PAN X, et al. Electrically driven hydrogenation of MoO3 nanoparticles in protonic acid for oxidative degradation of micropollutants[J]. ACS Appl Nano Mater, 2022, 5(5): 6832.
[14] [14] MOKHTARIFAR M, NGUYEN D T, SAKAR M, et al. Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO2/WO3 photocatalyst for the round-the-clock decomposition of methanol[J]. Mater Res Bull, 2021, 137: 111203.
[15] [15] CHANG K H, HU C C, CHOU C Y. Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites: Independent control of crystal size and water content[J]. Chem Mater, 2007, 19(8): 2112.
[16] [16] SALARI M, KONSTANTINOV K, LIU H K. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies[J]. J Mater Chem, 2011, 21(13): 5128.
[17] [17] LU X, ZENG Y, YU M, et al. Oxygen‐deficient hematite nanorods as high‐performance and novel negative electrodes for flexible asymmetric supercapacitors[J]. Adv Mater, 2014, 26(19): 3148.
[18] [18] LIU R, MA L, NIU G, et al. Oxygen‐deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors[J]. Adv Funct Mater, 2017, 27(29): 1701635.
[19] [19] ZHAI T, SUN S, LIU X, et al. Achieving insertion‐like capacity at ultrahigh rate via tunable surface pseudocapacitance[J]. Adv Mater, 2018, 30(12): 1706640.
[20] [20] LI Y, ZHANG Y, LI Y, et al. Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications[J]. Electrochim Acta, 2014, 145: 177.
[21] [21] GUO W, YU C, LI S, et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh‐rate supercapacitors[J]. Adv Mater, 2019, 31(28): 1901241.
[22] [22] JAMPANI P H, VELIKOKHATNYI O, KADAKIA K, et al. High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications[J]. J Mater Chem A, 2015, 3(16): 8413.
[23] [23] FENG Y, LIU W, WANG Y, et al. Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors[J]. J Power Sources, 2020, 458: 228005.
[24] [24] ZHANG A, GAO R, HU L, et al. Rich bulk oxygen vacancies- engineered MnO2 with enhanced charge transfer kinetics for supercapacitor[J]. Chem Eng J, 2021, 417: 129186.
[25] [25] MELSHEIMER J, ZIEGLER D. The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method[J]. Thin Solid Films, 1988, 163: 301.
[26] [26] CHENG F, ZHANG T, ZHANG Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew Chem Int Ed, 2013, 52(9): 2474.
[27] [27] QIU W, XIAO H, GAO H. Defect engineering tuning of MnO2 nanorods bifunctional cathode for flexible asymmetric supercapacitors and microbial fuel cells[J]. J Power Sources, 2021, 491: 229583.
[28] [28] CUI P, ZHANG Y, CAO Z, et al. Plasma-assisted lattice oxygen vacancies engineering recipe for high-performing supercapacitors in a model of birnessite-MnO2[J]. Chem Eng J, 2021, 412: 128676.
[29] [29] ZENG W, QUAN H, MENG J, et al. Nitrogen plasma activation of cactus-like MnO2 grown on carbon cloth for high-mass loading asymmetric supercapacitors[J]. Appl Surf Sci, 2022, 572: 151323.
[32] [32] YANG J, XIAO X, CHEN P, et al. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan[J]. Nano Energy, 2019, 58: 455.
[33] [33] YANG S, LIU Y, HAO Y, et al. Oxygen‐vacancy abundant ultrafine Co3O4/graphene composites for high‐rate supercapacitor electrodes[J]. Adv Sci, 2018, 5(4): 1700659.
[34] [34] MA Q, CUI F, ZHANG J, et al. Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor[J]. Appl Surf Sci, 2022, 578: 152001.
[35] [35] ENSAFI A A, MOOSAVIFARD S E, REZAEI B, et al. Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors[J]. J Mater Chem A, 2018, 6(22): 10497.
[36] [36] WANG X, LI Y, JIN T, et al. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. Nano Lett, 2017, 17(12): 7989.
[37] [37] LIU S, SAN HUI K, HUI K N, et al. Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors[J]. J Mater Chem A, 2016, 4(21): 8061.
[38] [38] LI P, RUAN C, XU J, et al. Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet[J]. Electrochim Acta, 2020, 330: 135334.
[39] [39] SIVAKUMAR P, RAJ C J, KULANDAIVEL L, et al. Impact of oxygen‐defects induced electrochemical properties of three‐dimensional flower‐like CoMoO4 nanoarchitecture for supercapacitor applications[J]. Int J Energy Res, 2022, 46(12): 17043.
[40] [40] LIU S, YIN Y, NI D, et al. Phosphorous-containing oxygen-deficient cobalt molybdate as an advanced electrode material for supercapacitors[J]. Energy Storage Mater, 2019, 19: 186.
[41] [41] CAI Z, BI Y, HU E, et al. Single‐crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis[J]. Adv Energy Mater, 2018, 8(3): 1701694.
[42] [42] LIU G, WANG B, LIU T, et al. 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors[J]. J Mater Chem A, 2018, 6(4): 1822.
[43] [43] LIANG K, MARCUS K, YANG Z, et al. Freestanding NiFe oxyfluoride holey film with ultrahigh volumetric capacitance for flexible asymmetric supercapacitors[J]. Small, 2018, 14(3): 1702295.
[44] [44] LIU S, YIN Y, NI D, et al. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors[J]. Energy Storage Mater, 2019, 22: 384.
[45] [45] YANG X, XIANG C, ZOU Y, et al. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes[J]. J Mater Sci Technol, 2020, 55: 223.
[46] [46] WANG S, LI L, HE W, et al. Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced li‐ion capacitors[J]. Adv Funct Mater, 2020, 30(27): 2000350.
[47] [47] MAO X, WANG Y, XIANG C, et al. Core-shell structured CuCo2S4@CoMoO4 nanorods for advanced electrode materials[J]. J Alloys Compd, 2020, 844: 156133.
[48] [48] DU J, ZHOU G, ZHANG H, et al. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5(15): 7405.
[49] [49] KAMBLE G P, KASHALE A A, RASAL A S, et al. Marigold micro-flower like NiCo2O4 grown on flexible stainless-steel mesh as an electrode for supercapacitors[J]. RSC Adv, 2021, 11(6): 3666.
[50] [50] ZHANG Y, TAO L, XIE C, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Adv Mater, 2020, 32(7): 1905923.
[51] [51] ZHAO T, LIU C, YI F, et al. Hollow N-doped carbon@O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor[J]. Electrochim Acta, 2020, 364: 137260.
[52] [52] LUO X, ZHOU Q, GUO M, et al. Multiple structural defects in poor-crystalline In-doped NiCo2O4 nanoneedles synergistically and remarkably enhance supercapacitive performance[J]. Chem Eng J, 2022, 431: 134220.
[53] [53] WEI S, WAN C, ZHANG L, et al. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode[J]. Chem Eng J, 2022, 429: 132242.
Get Citation
Copy Citation Text
JIANG Chao, ZHANG Xiaohua, LU Shuaicheng, ZHANG Weiteng, WANG Jie, YAN Xiaoyan, ZHAO Xinxin, LIU Baosheng. Electrochemical Performance of Oxygen Vacancies Enhanced Transition Metal Oxides in Supercapacitor[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1835
Category:
Received: Nov. 14, 2022
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Chao JIANG (s202114210112@stu.tyust.edu.cn)
CSTR:32186.14.