Electronics Optics & Control, Volume. 28, Issue 5, 70(2021)
Improved YOLOv3 Based Target Detection Algorithm for Airborne Platform,
[1] [1] VIOLA P A, JONES M J, SNOW D.Detecting pedestrians using patterns of motion and appearance[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003:734-741.
[2] [2] LOWE D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision, 2004, 60(2):91-110.
[3] [3] DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005:886-893.
[4] [4] VAPNIK V.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999, 10(5):988-999.
[5] [5] VIOLA P A, JONES M J.Robust real-time face detection[J].International Journal of Computer Vision, 2004, 57(2):137-154.
[6] [6] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:580-587.
[7] [7] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV), 2015:1440-1448.
[8] [8] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2016, 39(6):1137-1149.
[9] [9] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
[10] [10] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision, 2016:21-37.
[11] [11] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520.
[12] [12] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020:12993-13000.
[13] [13] SALSCHEIDER N O.FeatureNMS:non-maximum suppression by learning feature embeddings[J].arXiv preprint arXiv:2002.07662, 2020.
[14] [14] VASSILVITSKII S, ARTHUR D.K-means++:the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2006:1027-1035.
[15] [15] REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:658-666.
Get Citation
Copy Citation Text
YAN Kaizhong, MA Guoliang, XU Lisong, SHANG Haipeng, YU Rui. Improved YOLOv3 Based Target Detection Algorithm for Airborne Platform,[J]. Electronics Optics & Control, 2021, 28(5): 70
Category:
Received: May. 15, 2020
Accepted: --
Published Online: May. 14, 2021
The Author Email: Kaizhong YAN (1935458275@qq.com)