Optics and Precision Engineering, Volume. 30, Issue 13, 1606(2022)
Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network
[1] [1] 1郝博雅, 孙洁. 高光谱影像特性研究[J].计算机工程与应用, 2014, 50(S1): 230-233.HAOB Y, SUNJ. Research of hyper-spectral imaging characteristics[J]. Computer Engineering and Applications, 2014, 50(S1): 230-233. (in Chinese)
[2] S OZKAN, B KAYA, G B AKAR. EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57, 482-496(2019).
[3] M GOVENDER, K CHETTY, H BULCOCK. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA, 33, 145-151(2009).
[4] D W J STEIN, S G BEAVEN, L E HOFF et al. Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine, 19, 58-69(2002).
[5] D F BARBIN, G ELMASRY, D W SUN et al. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chemistry, 138, 1162-1171(2013).
[6] M E MARTIN, M B WABUYELE, K CHEN et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Annals of Biomedical Engineering, 34, 1061-1068(2006).
[7] [7] 7李勇, 王珂, 张立保, 等. 多断层融合的肺CT肿瘤靶区超分辨率重建[J]. 光学 精密工程, 2010, 18(5): 1212-1218.LIY, WANGK, ZHANGL B, et al. Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion[J]. Opt. Precision Eng., 2010, 18(5): 1212-1218. (in Chinese)
[8] B ARAD, O BEN-SHAHAR, R TIMOFTE et al. NTIRE 2018 challenge on spectral reconstruction from RGB images, 1042-104209(2018).
[9] B ARAD, R TIMOFTE, O BEN-SHAHAR et al. NTIRE 2020 challenge on spectral reconstruction from an RGB image, 1806-1822(2020).
[10] J Q WU, J AESCHBACHER, R TIMOFTE. In defense of shallow learned spectral reconstruction from RGB images, 471-479(2017).
[11] B ARAD, O BEN-SHAHAR. Sparse recovery of hyperspectral signal from natural RGB images, 19-34(2016).
[12] [12] 12韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程, 2017, 25(6): 1619-1626. doi: 10.3788/ope.20172506.1619HANY L, ZHAOY P, WANGQ S, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Opt. Precision Eng., 2017, 25(6): 1619-1626. (in Chinese). doi: 10.3788/ope.20172506.1619
[13] [13] 13朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.3788/ope.20192703.0718ZHUF ZH, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725. (in Chinese). doi: 10.3788/ope.20192703.0718
[14] Z W XIONG, Z SHI, H Q LI et al. HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections, 518-525(2017).
[15] T STIEBEL, S KOPPERS, P SELTSAM et al. Reconstructing spectral images from RGB-images using a convolutional neural network, 1061-10615(2018).
[16] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).
[17] S IOFFE, C SZEGEDY. Batch normalization: Accelerating deep network training by reducing internal covariate shift, 448-456(2015).
[18] I GOODFELLOW, J POUGET-ABADIE, M MIRZA et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2020).
[19] J J LI, C X WU, R SONG et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images, 1894-1903(2020).
[20] Y Z ZHAO, L M PO, Q YAN et al. Hierarchical regression network for spectral reconstruction from RGB images, 1695-1704(2020).
[21] H PENG, X M CHEN, J ZHAO. Residual pixel attention network for spectral reconstruction from RGB images, 2012-2020(2020).
[22] S H GAO, M M CHENG, K ZHAO et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[23] J HU, L SHEN, S ALBANIE et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).
[24] [24] 24蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142
[25] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[26] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[27] M Z ALOM, C YAKOPCIC, T M TAHA et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-net (R2U-net). OH, 228-233(2018).
[28] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).
[29] [29] 29佘晖, 吕玮阁, 邱珏沁, 等. 商用数码相机的光谱灵敏度测量及评价[J]. 光学仪器, 2017, 39(5): 15-21.SHEH, LÜW G, QIUJ Q, et al. Spectral sensitivity measurement and evaluation of commercial digital cameras[J]. Optical Instruments, 2017, 39(5): 15-21. (in Chinese)
[30] A L MAAS, A Y HANNUN, A Y Ng. Rectifier nonlinearities improve neural network acoustic models, 30, 3(2013).
Get Citation
Copy Citation Text
Beibei SONG, Suina MA, Fan HE, Wenfang SUN. Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network[J]. Optics and Precision Engineering, 2022, 30(13): 1606
Category: Information Sciences
Received: Jul. 2, 2021
Accepted: --
Published Online: Jul. 27, 2022
The Author Email: SONG Beibei (bbsong@chd.edu.cn)