Optics and Precision Engineering, Volume. 30, Issue 13, 1606(2022)

Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network

Beibei SONG1、*, Suina MA1, Fan HE1, and Wenfang SUN2
Author Affiliations
  • 1School of Information Engineering, Chang'an University, Xi'an70064, China
  • 2School of Aerospace Science and Technology, Xidian University, Xi'an71016, China
  • show less
    References(30)

    [1] [1] 1郝博雅, 孙洁. 高光谱影像特性研究[J].计算机工程与应用, 2014, 50(S1): 230-233.HAOB Y, SUNJ. Research of hyper-spectral imaging characteristics[J]. Computer Engineering and Applications, 2014, 50(S1): 230-233. (in Chinese)

    [2] S OZKAN, B KAYA, G B AKAR. EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57, 482-496(2019).

    [3] M GOVENDER, K CHETTY, H BULCOCK. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA, 33, 145-151(2009).

    [4] D W J STEIN, S G BEAVEN, L E HOFF et al. Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine, 19, 58-69(2002).

    [5] D F BARBIN, G ELMASRY, D W SUN et al. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chemistry, 138, 1162-1171(2013).

    [6] M E MARTIN, M B WABUYELE, K CHEN et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Annals of Biomedical Engineering, 34, 1061-1068(2006).

    [7] [7] 7李勇, 王珂, 张立保, 等. 多断层融合的肺CT肿瘤靶区超分辨率重建[J]. 光学 精密工程, 2010, 18(5): 1212-1218.LIY, WANGK, ZHANGL B, et al. Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion[J]. Opt. Precision Eng., 2010, 18(5): 1212-1218. (in Chinese)

    [8] B ARAD, O BEN-SHAHAR, R TIMOFTE et al. NTIRE 2018 challenge on spectral reconstruction from RGB images, 1042-104209(2018).

    [9] B ARAD, R TIMOFTE, O BEN-SHAHAR et al. NTIRE 2020 challenge on spectral reconstruction from an RGB image, 1806-1822(2020).

    [10] J Q WU, J AESCHBACHER, R TIMOFTE. In defense of shallow learned spectral reconstruction from RGB images, 471-479(2017).

    [11] B ARAD, O BEN-SHAHAR. Sparse recovery of hyperspectral signal from natural RGB images, 19-34(2016).

    [12] [12] 12韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程, 2017, 25(6): 1619-1626. doi: 10.3788/ope.20172506.1619HANY L, ZHAOY P, WANGQ S, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Opt. Precision Eng., 2017, 25(6): 1619-1626. (in Chinese). doi: 10.3788/ope.20172506.1619

    [13] [13] 13朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.3788/ope.20192703.0718ZHUF ZH, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725. (in Chinese). doi: 10.3788/ope.20192703.0718

    [14] Z W XIONG, Z SHI, H Q LI et al. HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections, 518-525(2017).

    [15] T STIEBEL, S KOPPERS, P SELTSAM et al. Reconstructing spectral images from RGB-images using a convolutional neural network, 1061-10615(2018).

    [16] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).

    [17] S IOFFE, C SZEGEDY. Batch normalization: Accelerating deep network training by reducing internal covariate shift, 448-456(2015).

    [18] I GOODFELLOW, J POUGET-ABADIE, M MIRZA et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2020).

    [19] J J LI, C X WU, R SONG et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images, 1894-1903(2020).

    [20] Y Z ZHAO, L M PO, Q YAN et al. Hierarchical regression network for spectral reconstruction from RGB images, 1695-1704(2020).

    [21] H PENG, X M CHEN, J ZHAO. Residual pixel attention network for spectral reconstruction from RGB images, 2012-2020(2020).

    [22] S H GAO, M M CHENG, K ZHAO et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).

    [23] J HU, L SHEN, S ALBANIE et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [24] [24] 24蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142

    [25] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [26] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [27] M Z ALOM, C YAKOPCIC, T M TAHA et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-net (R2U-net). OH, 228-233(2018).

    [28] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).

    [29] [29] 29佘晖, 吕玮阁, 邱珏沁, 等. 商用数码相机的光谱灵敏度测量及评价[J]. 光学仪器, 2017, 39(5): 15-21.SHEH, LÜW G, QIUJ Q, et al. Spectral sensitivity measurement and evaluation of commercial digital cameras[J]. Optical Instruments, 2017, 39(5): 15-21. (in Chinese)

    [30] A L MAAS, A Y HANNUN, A Y Ng. Rectifier nonlinearities improve neural network acoustic models, 30, 3(2013).

    Tools

    Get Citation

    Copy Citation Text

    Beibei SONG, Suina MA, Fan HE, Wenfang SUN. Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network[J]. Optics and Precision Engineering, 2022, 30(13): 1606

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 2, 2021

    Accepted: --

    Published Online: Jul. 27, 2022

    The Author Email: SONG Beibei (bbsong@chd.edu.cn)

    DOI:10.37188/OPE.2021.0433

    Topics