Acta Photonica Sinica, Volume. 53, Issue 11, 1114002(2024)

A Four-channel Ⅲ-V/Si Laser Array Based on Silicon Waveguide Distributed Bragg Sampled Grating

Yanqing JIA1...4, Hailing WANG2,4,*, Ranzhe MENG2, Jianxin ZHANG3,4 and Xuyan ZHOU4 |Show fewer author(s)
Author Affiliations
  • 1College of Physics and Electronic Science,Shandong Normal University,Jinan 250358,China
  • 2Laboratory of Solid State Optoelectronics Information Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 3School of Physics and Electronic Information,Weifang University,Weifang 261061,China
  • 4Weifang Academy of Advanced Opto-electronic Circuits,Weifang 261021,China
  • show less
    References(41)

    [1] Zhican ZHOU, OU Xiangpeng, J E BOWERS et al. Prospects and applications of on-chip lasers. Elight, 3, 1(2023).

    [2] V R ALMEIDA, C A BARRIOS, R R PANEPUCCI et al. All-optical control of light on a silicon chip. Nature, 431, 1081-1084(2004).

    [3] C GUNN. CMOS photonics for high-speed interconnects. IEEE Micro, 26, 58-66(2006).

    [4] R SOREF. The past, present, and future of silicon photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1678-1687(2006).

    [5] D THOMSON, A ZILKIE, J E BOWERS et al. Roadmap on silicon photonics. Journal of Optics, 18, 073003(2016).

    [6] C R DOERR. Silicon photonics integration in telecommunication. Frontiers in Physics, 3, 1-16(2015).

    [7] Tou SHI, T I SU, Ning ZHANG et al. Silicon photonics platform for 400G data center applications, 11-15(2018).

    [8] S RUMLEY, D NIKOLOVA, R HENDRY et al. Silicon photonics for exascale systems. Journal of Lightwave Technology, 33, 547-562(2015).

    [9] Yichen SHEN, N C HARRIS, S SKIRLO et al. Deep learning with coherent nanophotonic circuits. Nature Photonics, 11, 441-446(2017).

    [10] A W FANG, H PARK, O COHEN et al. Electrically pumped hybrid AlGaInAs-silicon evanscent laser. Optics Express, 14, 9203-9210(2006).

    [11] S KEYVANINIA, M MUNEED, S STANKOVIA et al. Ultra-thin DVS-BCB adhesive bonding of Ⅲ-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3, 35-46(2013).

    [12] T MATSUMOTO, T KURAHASH, R KONOIKE et al. Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding. Journal of Lightwave Technology, 37, 307-313(2019).

    [13] Shiyun LIN, Xuezhe ZHENG, Jin YAO et al. Efficient, tunable flip-chip-integrated Ⅲ-V/Si hybrid external-cavity laser array. Optics Express, 24, 21454-21462(2016).

    [14] B HAQ, J R VASKASI, Jing ZHANG et al. Micro-transfer-printed Ⅲ-V-on-silicon C-band distributed feedback lasers. Optics Express, 28, 32793-32801(2020).

    [15] H HUANG, J DUAN, B DONG et al. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics, 5, 016103(2020).

    [16] J M RAMIREZ, H ELFAIKI, T VEROLET et al. Ⅲ-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-13(2020).

    [17] A W FANG, B R KOCH, R JONES et al. A distributed bragg reflector silicon evanescent laser. IEEE Photonics Technology Letters, 20, 1667-1669(2008).

    [18] M J WANG, F X DONG, R Z WMENG et al. Eight-channel hybrid-integrated laser array with 100 GHz channel spacing. Electronics Letters, 56, 1072-1073(2020).

    [19] N DAIX, E UCCELLI, L CZORNOMAZ et al. Towards large size substrates for Ⅲ-V co-integration made by direct wafer bonding on Si. APL Materials, 2, 086104(2014).

    [20] L SANCHEZ, F FOURNEL, B MONTMAYEUL et al. Collective die direct bonding for photonic on silicon. ECS Transactions, 86, 223-231(2018).

    [21] S Y SIEW, B LI, F GAO et al. Review of Si photonics technology and platform development. Journal of Lightwave Technology, 39, 4374-4389(2021).

    [22] A W FANG, E LIVELY, Yinghao KUO et al. A distributed feedback silicon evanescent laser. Optics Express, 16, 4413-4419(2008).

    [23] T TORREY, C C J MAK, D F JEREMY et al. Back-side-on-BOX heterogeneously integrated Ⅲ-V-on-silicon o-band distributed feedback lasers. Journal of Lightwave Technology, 38, 3000-3006(2020).

    [24] T AIHARA, T HIRAKI, T FUJII et al. Membrane Ⅲ-V/Si DFB laser using uniform grating and width-modulated Si waveguide. Journal of Lightwave Technology, 38, 2961-2967(2020).

    [25] T AIHARA, T HIRAKI, T FUJII et al. Membrane Ⅲ-V/Si DFB laser using uniform grating and width-modulated Si waveguide. Journal of Lightwave Technology, 38, 2961-2967(2020).

    [26] A W FANG, B R KOCH, R JONES et al. A distributed Bragg refector silicon evanescent laser. IEEE Photonics Technology Letters, 20, 1667-1669(2008).

    [27] N NISHIYAMA, Y HAYASGI, J SUZUKI et al. Ⅲ-V/Si low temperature direct bonding technology for photonic device integration on SOI(2017).

    [28] T THIESSEN, S MENEZO, C JANY et al. Back-side-on-BOX heterogeneously integrated Ⅲ-V-on-silicon O-band discrete-mode lasers. Optics Express, 28, 38579-38591(2020).

    [29] H NISHI, T FUJI, N P DIAMANTOPOULOS et al. Integration of eight-channel directly modulated membrane-laser array and SiN AWG multiplexer on Si. Journal of Lightwave Technology, 37, 266-273(2019).

    [30] R JONES, P DOUSSIERE, J. B DRISCOLL et al. Heterogeneously Integrated InP/Silicon Photonics: fabricating fully functional transceivers. IEEE Nanotechnol Magazine, 13, 17-26(2019).

    [31] Yuechun SHI, Simin LI, Xiangfei CHEN et al. High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Scientific Reports, 4, 7377(2014).

    [32] Jun LIU, Shengping LIU, Qi TANG et al. Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision. Optics Letters, 40, 5136-5139(2015).

    [33] Jie SUN, C W HOLZWARTH, H I SMITH et al. Phase-shift Bragg grating in silicon using equivalent phase-shift method. IEEE Photonics Technology Letters, 24, 25-27(2012).

    [34] Yitang DAI, Xiangfei CHEN, Li XIA et al. Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Optics Letters, 29, 1333-1335(2004).

    [35] Dianjie JIANG, Xiangfei CHEN, Yitang DAI et al. A novel distributed feedback fiber laser based on equivalent phase shift. IEEE Photonics Technology Letters, 16, 2598-2600(2004).

    [36] Yitang DAI, Xiangfei CHEN, Dianjie JIANG et al. Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photonics Technology Letters, 16, 2284-2286(2007).

    [37] Jingsi LI, Huan WANG, Xiangfei CHEN et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology. Optics Express, 17, 5240-5245(2009).

    [38] Shengping LIU, Yuechun SHI, Lijun HAO et al. Experimental demonstration of the anti-symmetric sampled Bragg grating. IEEE Photonics Technology Letters, 29, 353-356(2017).

    [39] M N SYSAK, J O ANTHES, J E BOWERS et al. Jones. Integration of hybrid silicon lasers and electroabsorption modulators. Optics Express, 16, 12478-12486(2008).

    [40] Ranzhe MENG, Hailing WANG, Tao SHI et al. A hybrid silicon evanescent laser with SBG structure based on REC technique for silicon photonics. Laser Physics, 31, 065802(2021).

    [41] Tao SHI, Hailing WANG, Wanhua ZHENG. Demonstration of the flip-chip bonded evanescently coupled Ⅲ-V-on-Si sampled grating DFB laser. IEEE Photonics Technology Letters, 34, 444-447(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yanqing JIA, Hailing WANG, Ranzhe MENG, Jianxin ZHANG, Xuyan ZHOU. A Four-channel Ⅲ-V/Si Laser Array Based on Silicon Waveguide Distributed Bragg Sampled Grating[J]. Acta Photonica Sinica, 2024, 53(11): 1114002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 15, 2024

    Accepted: May. 20, 2024

    Published Online: Jan. 8, 2025

    The Author Email: WANG Hailing (hlwang07@semi.ac.cn)

    DOI:10.3788/gzxb20245311.1114002

    Topics